JavaScript SHA-256加密算法詳細代碼
/*
- A JavaScript implementation of the Secure Hash Algorithm, SHA-256, as defined
- in FIPS 180-2
- Version 2.2 Copyright Angel Marin, Paul Johnston 2000 - 2009.
- Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
- Distributed under the BSD License
- See http://pajhome.org.uk/crypt/md5 for details.
- Also http://anmar.eu.org/projects/jssha2/ */
/*
- Configurable variables. You may need to tweak these to be compatible with
- the server-side, but the defaults work in most cases. / var hexcase = 0; / hex output format. 0 - lowercase; 1 - uppercase / var b64pad = ""; / base-64 pad character. "=" for strict RFC compliance */
/*
- These are the functions you'll usually want to call
- They take string arguments and return either hex or base-64 encoded strings */ function hex_sha256(s) { return rstr2hex(rstr_sha256(str2rstr_utf8(s))); } function b64_sha256(s) { return rstr2b64(rstr_sha256(str2rstr_utf8(s))); } function any_sha256(s, e) { return rstr2any(rstr_sha256(str2rstr_utf8(s)), e); } function hex_hmac_sha256(k, d) { return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); } function b64_hmac_sha256(k, d) { return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); } function any_hmac_sha256(k, d, e) { return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d)), e); }
/*
- Perform a simple self-test to see if the VM is working
*/
function sha256_vm_test()
{
return hex_sha256("abc").toLowerCase() ==
}"ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad";
/*
- Calculate the sha256 of a raw string / function rstr_sha256(s) { return binb2rstr(binb_sha256(rstr2binb(s), s.length 8)); }
/*
Calculate the HMAC-sha256 of a key and some data (raw strings) / function rstr_hmac_sha256(key, data) { var bkey = rstr2binb(key); if(bkey.length > 16) bkey = binb_sha256(bkey, key.length 8);
var ipad = Array(16), opad = Array(16); for(var i = 0; i < 16; i++) { ipad[i] = bkey[i] ^ 0x36363636; opad[i] = bkey[i] ^ 0x5C5C5C5C; }
var hash = binb_sha256(ipad.concat(rstr2binb(data)), 512 + data.length * 8); return binb2rstr(binb_sha256(opad.concat(hash), 512 + 256)); }
/*
- Convert a raw string to a hex string
*/
function rstr2hex(input)
{
try { hexcase } catch(e) { hexcase=0; }
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
var output = "";
var x;
for(var i = 0; i < input.length; i++)
{
x = input.charCodeAt(i);
output += hex_tab.charAt((x >>> 4) & 0x0F)
} return output; }+ hex_tab.charAt( x & 0x0F);
/*
- Convert a raw string to a base-64 string
*/
function rstr2b64(input)
{
try { b64pad } catch(e) { b64pad=''; }
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var output = "";
var len = input.length;
for(var i = 0; i < len; i += 3)
{
var triplet = (input.charCodeAt(i) << 16)
for(var j = 0; j < 4; j++) { if(i 8 + j 6 > input.length 8) output += b64pad; else output += tab.charAt((triplet >>> 6(3-j)) & 0x3F); } } return output; }| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0) | (i + 2 < len ? input.charCodeAt(i+2) : 0);
/*
Convert a raw string to an arbitrary string encoding */ function rstr2any(input, encoding) { var divisor = encoding.length; var remainders = Array(); var i, q, x, quotient;
/ Convert to an array of 16-bit big-endian values, forming the dividend / var dividend = Array(Math.ceil(input.length / 2)); for(i = 0; i < dividend.length; i++) { dividend[i] = (input.charCodeAt(i 2) << 8) | input.charCodeAt(i 2 + 1); }
/*
- Repeatedly perform a long division. The binary array forms the dividend,
- the length of the encoding is the divisor. Once computed, the quotient
- forms the dividend for the next step. We stop when the dividend is zero.
- All remainders are stored for later use. / while(dividend.length > 0) { quotient = Array(); x = 0; for(i = 0; i < dividend.length; i++) { x = (x << 16) + dividend[i]; q = Math.floor(x / divisor); x -= q divisor; if(quotient.length > 0 || q > 0) quotient[quotient.length] = q; } remainders[remainders.length] = x; dividend = quotient; }
/ Convert the remainders to the output string / var output = ""; for(i = remainders.length - 1; i >= 0; i--) output += encoding.charAt(remainders[i]);
/ Append leading zero equivalents / var full_length = Math.ceil(input.length * 8 /
(Math.log(encoding.length) / Math.log(2)))
for(i = output.length; i < full_length; i++) output = encoding[0] + output;
return output; }
/*
- Encode a string as utf-8.
For efficiency, this assumes the input is valid utf-16. */ function str2rstr_utf8(input) { var output = ""; var i = -1; var x, y;
while(++i < input.length) { / Decode utf-16 surrogate pairs / x = input.charCodeAt(i); y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0; if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF) { x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF); i++; }
/ Encode output as utf-8 / if(x <= 0x7F) output += String.fromCharCode(x); else if(x <= 0x7FF) output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
0x80 | ( x & 0x3F));
else if(x <= 0xFFFF) output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
0x80 | ((x >>> 6 ) & 0x3F), 0x80 | ( x & 0x3F));
else if(x <= 0x1FFFFF) output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
0x80 | ((x >>> 12) & 0x3F), 0x80 | ((x >>> 6 ) & 0x3F), 0x80 | ( x & 0x3F));
} return output; }
/*
- Encode a string as utf-16
*/
function str2rstr_utf16le(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
return output; }(input.charCodeAt(i) >>> 8) & 0xFF);
function str2rstr_utf16be(input) { var output = ""; for(var i = 0; i < input.length; i++) output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF, input.charCodeAt(i) & 0xFF); return output; }
/*
- Convert a raw string to an array of big-endian words
- Characters >255 have their high-byte silently ignored. / function rstr2binb(input) { var output = Array(input.length >> 2); for(var i = 0; i < output.length; i++) output[i] = 0; for(var i = 0; i < input.length 8; i += 8) output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32); return output; }
/*
- Convert an array of big-endian words to a string / function binb2rstr(input) { var output = ""; for(var i = 0; i < input.length 32; i += 8) output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF); return output; }
/*
- Main sha256 function, with its support functions */ function sha256_S (X, n) {return ( X >>> n ) | (X << (32 - n));} function sha256_R (X, n) {return ( X >>> n );} function sha256_Ch(x, y, z) {return ((x & y) ^ ((~x) & z));} function sha256_Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));} function sha256_Sigma0256(x) {return (sha256_S(x, 2) ^ sha256_S(x, 13) ^ sha256_S(x, 22));} function sha256_Sigma1256(x) {return (sha256_S(x, 6) ^ sha256_S(x, 11) ^ sha256_S(x, 25));} function sha256_Gamma0256(x) {return (sha256_S(x, 7) ^ sha256_S(x, 18) ^ sha256_R(x, 3));} function sha256_Gamma1256(x) {return (sha256_S(x, 17) ^ sha256_S(x, 19) ^ sha256_R(x, 10));} function sha256_Sigma0512(x) {return (sha256_S(x, 28) ^ sha256_S(x, 34) ^ sha256_S(x, 39));} function sha256_Sigma1512(x) {return (sha256_S(x, 14) ^ sha256_S(x, 18) ^ sha256_S(x, 41));} function sha256_Gamma0512(x) {return (sha256_S(x, 1) ^ sha256_S(x, 8) ^ sha256_R(x, 7));} function sha256_Gamma1512(x) {return (sha256_S(x, 19) ^ sha256_S(x, 61) ^ sha256_R(x, 6));}
var sha256_K = new Array ( 1116352408, 1899447441, -1245643825, -373957723, 961987163, 1508970993, -1841331548, -1424204075, -670586216, 310598401, 607225278, 1426881987, 1925078388, -2132889090, -1680079193, -1046744716, -459576895, -272742522, 264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986, -1740746414, -1473132947, -1341970488, -1084653625, -958395405, -710438585, 113926993, 338241895, 666307205, 773529912, 1294757372, 1396182291, 1695183700, 1986661051, -2117940946, -1838011259, -1564481375, -1474664885, -1035236496, -949202525, -778901479, -694614492, -200395387, 275423344, 430227734, 506948616, 659060556, 883997877, 958139571, 1322822218, 1537002063, 1747873779, 1955562222, 2024104815, -2067236844, -1933114872, -1866530822, -1538233109, -1090935817, -965641998 );
function binb_sha256(m, l) { var HASH = new Array(1779033703, -1150833019, 1013904242, -1521486534, 1359893119, -1694144372, 528734635, 1541459225); var W = new Array(64); var a, b, c, d, e, f, g, h; var i, j, T1, T2;
/ append padding / m[l >> 5] |= 0x80 << (24 - l % 32); m[((l + 64 >> 9) << 4) + 15] = l;
for(i = 0; i < m.length; i += 16) { a = HASH[0]; b = HASH[1]; c = HASH[2]; d = HASH[3]; e = HASH[4]; f = HASH[5]; g = HASH[6]; h = HASH[7];
for(j = 0; j < 64; j++)
{
if (j < 16) W[j] = m[j + i];
else W[j] = safe_add(safe_add(safe_add(sha256_Gamma1256(W[j - 2]), W[j - 7]),
sha256_Gamma0256(W[j - 15])), W[j - 16]);
T1 = safe_add(safe_add(safe_add(safe_add(h, sha256_Sigma1256(e)), sha256_Ch(e, f, g)),
sha256_K[j]), W[j]);
T2 = safe_add(sha256_Sigma0256(a), sha256_Maj(a, b, c));
h = g;
g = f;
f = e;
e = safe_add(d, T1);
d = c;
c = b;
b = a;
a = safe_add(T1, T2);
}
HASH[0] = safe_add(a, HASH[0]);
HASH[1] = safe_add(b, HASH[1]);
HASH[2] = safe_add(c, HASH[2]);
HASH[3] = safe_add(d, HASH[3]);
HASH[4] = safe_add(e, HASH[4]);
HASH[5] = safe_add(f, HASH[5]);
HASH[6] = safe_add(g, HASH[6]);
HASH[7] = safe_add(h, HASH[7]);
} return HASH; }
function safe_add (x, y)
{
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xFFFF);
}
</pre>