普里姆算法求最小生成樹
#include "iostream"
using namespace std;const int num = 9; //節點個數 #define Infinity 65535; //本例中以節點0作為生成樹的起始節點 void MinSpanTree_Prime(int graphic[num][num]){ int lowcost[num]; //記錄從節點num到生成樹的最短距離,如果為0則表示該節點已在生成樹中 int adjvex[num]; //記錄相關節點,如:adjvex[1] = 5表示最小生成樹中節點1和5有路徑相連 int sum = 0; // 記錄最小生成樹邊權重之和 memset(adjvex, 0, sizeof(adjvex)); //選取0節點作為生成樹的起點 for (int i = 0; i < num; i++) lowcost[i] = graphic[0][i]; for (int i = 1; i < num; i++){ int min = Infinity; int index; for (int j = 1; j < num; j++){ if (lowcost[j] != 0 && lowcost[j] < min){ index = j; min = lowcost[j]; } } sum += min; lowcost[index] = 0; //將當前節點放入生成樹中 cout << adjvex[index] << " -> " << index << endl; //修正其他節點到生成樹的最短距離 for (int j = 1; j < num; j++){ if (lowcost[j] != 0 && graphic[index][j] < lowcost[j]){ lowcost[j] = graphic[index][j]; adjvex[j] = index; } } } cout << "sum = " << sum << endl; } int main(){ int graphic[num][num]; for (int i = 0; i < num; i++) for (int j = 0; j < num; j++){ if (i == j) graphic[i][j] = 0; else graphic[i][j] = Infinity; } graphic[0][1] = 1; graphic[0][2] = 5; graphic[1][0] = 1; graphic[1][2] = 3; graphic[1][3] = 7; graphic[1][4] = 5; graphic[2][0] = 5; graphic[2][1] = 3; graphic[2][4] = 1; graphic[2][5] = 7; graphic[3][1] = 7; graphic[3][4] = 2; graphic[3][6] = 3; graphic[4][1] = 5; graphic[4][2] = 1; graphic[4][3] = 2; graphic[4][5] = 3; graphic[4][6] = 6; graphic[4][7] = 9; graphic[5][2] = 7; graphic[5][4] = 3; graphic[5][7] = 5; graphic[6][3] = 3; graphic[6][4] = 6; graphic[6][7] = 2; graphic[6][8] = 7; graphic[7][4] = 9; graphic[7][5] = 5; graphic[7][6] = 2; graphic[7][8] = 4; graphic[8][6] = 7; graphic[8][7] = 4; MinSpanTree_Prime(graphic); return 0; } </pre>
本文由用戶 ngmm 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!