mongodb 通過MapReduce統計用戶Pv Uv
通過spring data 操作mongodb,利用map reduce 來統計用戶訪問的Pv Uv。
詳細代碼見 https://github.com/WangErXiao/spring-data
具體的spring-data 操作mongodb這里不做介紹。這里只介紹mongo map reduce。
@Component public class UserDaoImpl extends MongoBaseDao implements UserDao { public void insertRecord(UserVisitRecord record) { getMongoTemplate().insert(record); } public void statisUserPvUv(String date) {String map = "function() { " + " if(this.date=='"+date+"'){ " + " emit(this.date ,{uv:1,pv:1,userIds:this.userId}) " + " }" + " } ";
String reduce = "function(key, values) { " + " var temp = new Array(); " + " var userIds= new Array(); " + " for(i = 0; i < values.length; i++) { " + " userIds=userIds.concat(values[i].userIds);" + " } " + " userIds.sort(); " + " for(i = 0; i < userIds.length; i++) {" + " if( userIds[i] == userIds[i+1]) { continue;}" + " temp[temp.length]=userIds[i];" + " } " + " return {uv:temp.length,pv:userIds.length,userIds:userIds};" + " }";
MapReduceOutput mapReduceOutput = getMongoTemplate().getCollection("userVisitRecord").mapReduce(map,reduce,"tmp",null); DBCollection resultColl = mapReduceOutput.getOutputCollection(); try { DBCursor cursor = resultColl.find(); while (cursor.hasNext()) { DBObject dbObject = cursor.next(); if (dbObject.get("value") != null) { UserStaticModel userStaticModel=new UserStaticModel(); userStaticModel.setUv(Math.round((double)((DBObject) dbObject.get("value")).get("uv"))); userStaticModel.setPv(Math.round((double) ((DBObject) dbObject.get("value")).get("pv"))); List<String>userIds=(List) ((DBObject) dbObject.get("value")).get("userIds"); Set<String> idSet=new HashSet<>(userIds); userStaticModel.setUserIds(new ArrayList(idSet)); userStaticModel.setDate(date); getMongoTemplate().insert(userStaticModel); } } }catch (Exception e){ e.printStackTrace(); }finally { resultColl.drop(); } }
public UserStaticModel findStatic(String date) { Query query=new Query(); query.addCriteria(Criteria.where("date").is(date)); return getMongoTemplate().findOne(query,UserStaticModel.class); } }</pre>
這段代碼中staticUserPvUv方法統計某天用戶訪問的Pv Uv。
map reduce方法如下:
String map = "function() { " + " if(this.date=='"+date+"'){ " + " emit(this.date ,{uv:1,pv:1,userIds:this.userId}) " + " }" + " } "; String reduce = "function(key, values) { " + " var temp = new Array(); " + " var userIds= new Array(); " + " for(i = 0; i < values.length; i++) { " + " userIds=userIds.concat(values[i].userIds);" + " } " + " userIds.sort(); " + " for(i = 0; i < userIds.length; i++) {" + " if( userIds[i] == userIds[i+1]) { continue;}" + " temp[temp.length]=userIds[i];" + " } " + " return {uv:temp.length,pv:userIds.length,userIds:userIds};" + " }";
看到這里很多人會疑惑:map方法為啥emit為
emit(this.date ,{uv:1,pv:1,userIds:this.userId})
而不直接
emit(this.date ,{userId:this.userId})
剛剛開始我也是這么寫的,這么寫會產生以下結果:
當某天只有一條記錄:該記錄就不走reduce ,直接出來,你得到的value就只有一個userId字符串,其他啥也沒有。pv,uv 自然也沒有。所以 你在emit 應該初始化{pv:1,uv:1,userIds:this.userId}
當某天記錄特別多,超過100條的emit,mongo比較缺德的是,它會把這100的reduce的結果重新自動emit,所以這里把map中emit的對象結構和reduce的return返回的對象結構寫成一致的原因。同一個key ,當每超過100個emit,結果就會從新emit,所以這個結果的pv uv 是無效的,這里只會用到重新emit的userIds,然后在繼續在reduce進行統計。
這兩個點是mongo mapreduce 比較坑爹的地方。注意這兩點其他都OK了
轉發標柱來源:http://my.oschina.net/robinyao/blog/467591