MapReduce的數據流程、執行流程
MapReduce的數據流程:
- 預先加載本地的輸入文件
- 經過MAP處理產生中間結果
- 經過shuffle程序將相同key的中間結果分發到同一節點上處理
- Recude處理產生結果輸出
- 將結果輸出保存在hdfs上
- This is an example Hadoop Map/Reduce application.
- It reads the text input files that must contain two integers per a line.
- The output is sorted by the first and second number and grouped on the
- first number.
- To run: bin/hadoop jar build/hadoop-examples.jar secondarysort
in-dir out-dir */ public class SecondarySort {
/**
- Define a pair of integers that are writable.
They are serialized in a byte comparable format. */ public static class IntPair implements WritableComparable
{ private int first = 0; private int second = 0; /**
Set the left and right values. */ public void set(int left, int right) { first = left; second = right; }
public int getFirst() { return first; }
public int getSecond() { return second; }
/**
- Read the two integers.
Encoded as: MIN_VALUE -> 0, 0 -> -MIN_VALUE, MAX_VALUE-> -1 */ @Override public void readFields(DataInput in) throws IOException { first = in.readInt() + Integer.MIN_VALUE; second = in.readInt() + Integer.MIN_VALUE; }
@Override public void write(DataOutput out) throws IOException { out.writeInt(first - Integer.MIN_VALUE); out.writeInt(second - Integer.MIN_VALUE); }
@Override // The hashCode() method is used by the HashPartitioner (the default // partitioner in MapReduce) public int hashCode() { return first * 157 + second; }
@Override public boolean equals(Object right) { if (right instanceof IntPair) {
IntPair r = (IntPair) right; return r.first == first && r.second == second;
} else {
return false;
} }
/* A Comparator that compares serialized IntPair. / public static class Comparator extends WritableComparator { public Comparator() {
super(IntPair.class);
}
// 針對key進行比較,調用多次 public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2,
int l2) { return compareBytes(b1, s1, l1, b2, s2, l2);
} }
static { // 注意:如果不進行注冊,則使用key.compareTo方法進行key的比較 // register this comparator WritableComparator.define(IntPair.class, new Comparator()); }
// 如果不注冊WritableComparator,則使用此方法進行key的比較 @Override public int compareTo(IntPair o) { if (first != o.first) {
return first < o.first ? -1 : 1;
} else if (second != o.second) {
return second < o.second ? -1 : 1;
} else {
return 0;
} } }
/**
Partition based on the first part of the pair. */ public static class FirstPartitioner extends
Partitioner<intpair, intwritable=""> {
@Override public int getPartition(IntPair key, IntWritable value,
int numPartitions) { return Math.abs(key.getFirst() * 127) % numPartitions;
} }
/**
- Compare only the first part of the pair, so that reduce is called once
for each value of the first part. */ public static class FirstGroupingComparator implements
RawComparator<intpair> {
// 針對key調用,調用多次 @Override public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
return WritableComparator.compareBytes(b1, s1, Integer.SIZE / 8, b2, s2, Integer.SIZE / 8);
}
// 沒有監控到被調用,不知道有什么用 @Override public int compare(IntPair o1, IntPair o2) {
int l = o1.getFirst(); int r = o2.getFirst(); return l == r ? 0 : (l < r ? -1 : 1);
} }
/**
- Read two integers from each line and generate a key, value pair
as ((left, right), right). */ public static class MapClass extends
Mapper<longwritable, text,="" intpair,="" intwritable=""> {
private final IntPair key = new IntPair(); private final IntWritable value = new IntWritable();
@Override public void map(LongWritable inKey, Text inValue, Context context)
throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(inValue.toString()); int left = 0; int right = 0; if (itr.hasMoreTokens()) { left = Integer.parseInt(itr.nextToken()); if (itr.hasMoreTokens()) { right = Integer.parseInt(itr.nextToken()); } key.set(left, right); value.set(right); context.write(key, value); }
} }
/**
A reducer class that just emits the sum of the input values. */ public static class Reduce extends
Reducer<intpair, intwritable,="" text,="" intwritable=""> {
private static final Text SEPARATOR = new Text(
"------------------------------------------------");
private final Text first = new Text();
@Override public void reduce(IntPair key, Iterable
values, Context context) throws IOException, InterruptedException { context.write(SEPARATOR, null); first.set(Integer.toString(key.getFirst())); for (IntWritable value : values) { context.write(first, value); }
} }
public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] ars = new String[] { "hdfs://data2.kt:8020/test/input",
"hdfs://data2.kt:8020/test/output" };
conf.set("fs.default.name", "hdfs://data2.kt:8020/");
String[] otherArgs = new GenericOptionsParser(conf, ars)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: secondarysort <in> <out>"); System.exit(2);
} Job job = new Job(conf, "secondary sort"); job.setJarByClass(SecondarySort.class); job.setMapperClass(MapClass.class);
// 不再需要Combiner類型,因為Combiner的輸出類型<text, intwritable="">對Reduce的輸入類型<intpair, intwritable="">不適用 // job.setCombinerClass(Reduce.class); // Reducer類型 job.setReducerClass(Reduce.class); // 分區函數 job.setPartitionerClass(FirstPartitioner.class); // 設置setSortComparatorClass,在partition后, // 每個分區內又調用job.setSortComparatorClass設置的key比較函數類排序 // 另外,在reducer接收到所有映射到這個reducer的map輸出后, // 也是會調用job.setSortComparatorClass設置的key比較函數類對所有數據對排序 // job.setSortComparatorClass(GroupingComparator2.class); // 分組函數
job.setGroupingComparatorClass(FirstGroupingComparator.class);
// the map output is IntPair, IntWritable // 針對自定義的類型,需要指定MapOutputKeyClass job.setMapOutputKeyClass(IntPair.class); // job.setMapOutputValueClass(IntWritable.class);
// the reduce output is Text, IntWritable job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); }
</ol>
MAP
在map階段,使用job.setInputFormatClass定義的InputFormat將輸入的數據集分割成小數據塊splites,
同時InputFormat提供一個RecordReder的實現。默認的是TextInputFormat,
他提供的RecordReder會將文本的一行的偏移量作為key,這一行的文本作為value。
這就是自定義Map的輸入是
然后調用自定義Map的map方法,將一個個
最終是按照自定義的MAP的輸出key類,輸出class類生成一個List
Partitioner
在map階段的最后,會先調用job.setPartitionerClass設置的類對這個List進行分區,
每個分區映射到一個reducer。每個分區內又調用job.setSortComparatorClass設置的key比較函數類排序。
可以看到,這本身就是一個二次排序。
如果沒有通過job.setSortComparatorClass設置key比較函數類,則使用key的實現的compareTo方法。
Shuffle:
將每個分區根據一定的規則,分發到reducer處理
Sort
在reduce階段,reducer接收到所有映射到這個reducer的map輸出后,
也是會調用job.setSortComparatorClass設置的key比較函數類對所有數據對排序。
然后開始構造一個key對應的value迭代器。這時就要用到分組,
使用jobjob.setGroupingComparatorClass設置的分組函數類。只要這個比較器比較的兩個key相同,
他們就屬于同一個組,它們的value放在一個value迭代器
Reduce
最后就是進入Reducer的reduce方法,reduce方法的輸入是所有的(key和它的value迭代器)。
同樣注意輸入與輸出的類型必須與自定義的Reducer中聲明的一致。
具體的例子:
是hadoop mapreduce example中的例子,自己改寫了一下并加入的注釋
import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.util.StringTokenizer;import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.RawComparator; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.io.WritableComparator; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Partitioner; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.util.GenericOptionsParser;
import com.catt.cdh.mr.example.SecondarySort2.FirstPartitioner; import com.catt.cdh.mr.example.SecondarySort2.Reduce;
/**
}</intpair,></text,></out></in></intwritable></intpair,></longwritable,></intpair></intpair,></intpair></pre>