spark讀取hbase數據做分布式計算
由于spark提供的hbaseTest是scala版本,并沒有提供java版。我將scala版本改為java版本,并根據數據做了些計算操作。
程序目的:查詢出hbase滿足條件的用戶,統計各個等級個數。
代碼如下,注釋已經寫詳細:
package com.sdyc.ndspark.sys;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableInputFormat;
import org.apache.hadoop.hbase.util.Base64;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;
import java.io.ByteArrayOutputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.Serializable;
import java.util.List;
/**
* <pre>
*
* spark hbase 測試
*
* Created with IntelliJ IDEA.
* User: zhangdonghao
* Date: 14-1-26
* Time: 上午9:24
* To change this template use File | Settings | File Templates.
* </pre>
*
* @author zhangdonghao
*/
public class HbaseTest implements Serializable {
public Log log = LogFactory.getLog(HbaseTest.class);
/**
* 將scan編碼,該方法copy自 org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil
*
* @param scan
* @return
* @throws IOException
*/
static String convertScanToString(Scan scan) throws IOException {
ByteArrayOutputStream out = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(out);
scan.write(dos);
return Base64.encodeBytes(out.toByteArray());
}
public void start() {
//初始化sparkContext,這里必須在jars參數里面放上Hbase的jar,
// 否則會報unread block data異常
JavaSparkContext sc = new JavaSparkContext("spark://nowledgedata-n3:7077", "hbaseTest",
"/home/hadoop/software/spark-0.8.1",
new String[]{"target/ndspark.jar", "target\\dependency\\hbase-0.94.6.jar"});
//使用HBaseConfiguration.create()生成Configuration
// 必須在項目classpath下放上hadoop以及hbase的配置文件。
Configuration conf = HBaseConfiguration.create();
//設置查詢條件,這里值返回用戶的等級
Scan scan = new Scan();
scan.setStartRow(Bytes.toBytes("195861-1035177490"));
scan.setStopRow(Bytes.toBytes("195861-1072173147"));
scan.addFamily(Bytes.toBytes("info"));
scan.addColumn(Bytes.toBytes("info"), Bytes.toBytes("levelCode"));
try {
//需要讀取的hbase表名
String tableName = "usertable";
conf.set(TableInputFormat.INPUT_TABLE, tableName);
conf.set(TableInputFormat.SCAN, convertScanToString(scan));
//獲得hbase查詢結果Result
JavaPairRDD<ImmutableBytesWritable, Result> hBaseRDD = sc.newAPIHadoopRDD(conf,
TableInputFormat.class, ImmutableBytesWritable.class,
Result.class);
//從result中取出用戶的等級,并且每一個算一次
JavaPairRDD<Integer, Integer> levels = hBaseRDD.map(
new PairFunction<Tuple2<ImmutableBytesWritable, Result>, Integer, Integer>() {
@Override
public Tuple2<Integer, Integer> call(
Tuple2<ImmutableBytesWritable, Result> immutableBytesWritableResultTuple2)
throws Exception {
byte[] o = immutableBytesWritableResultTuple2._2().getValue(
Bytes.toBytes("info"), Bytes.toBytes("levelCode"));
if (o != null) {
return new Tuple2<Integer, Integer>(Bytes.toInt(o), 1);
}
return null;
}
});
//數據累加
JavaPairRDD<Integer, Integer> counts = levels.reduceByKey(new Function2<Integer, Integer, Integer>() {
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
});
//打印出最終結果
List<Tuple2<Integer, Integer>> output = counts.collect();
for (Tuple2 tuple : output) {
System.out.println(tuple._1 + ": " + tuple._2);
}
} catch (Exception e) {
log.warn(e);
}
}
/**
* spark如果計算沒寫在main里面,實現的類必須繼承Serializable接口,<br>
* </>否則會報 Task not serializable: java.io.NotSerializableException 異常
*/
public static void main(String[] args) throws InterruptedException {
new HbaseTest().start();
System.exit(0);
}
}
運行結果如下:
0: 28528 11: 708 4: 28656 2: 36315 6: 23848 8: 19802 10: 6913 9: 15988 3: 31950 1: 38872 7: 21600 5: 27190 12: 17
本文由用戶 jopen 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!