MongoDB 那些坑

jopen 10年前發布 | 51K 次閱讀 MongoDB NoSQL數據庫

MongoDB 是目前炙手可熱的 NoSQL 文檔型數據庫,它提供的一些特性很棒:如自動 failover 機制,自動 sharding,無模式 schemaless,大部分情況下性能也很棒。但是薄荷在深入使用 MongoDB 過程中,遇到了不少問題,下面總結幾個我們遇到的坑。特別申明:我們目前用的 MongoDB 版本是 2.4.10,曾經升級到 MongoDB 2.6.0 版本,問題依然存在,又回退到 2.4.10 版本。

MongoDB 數據庫級鎖

坑爹指數:5星(最高5星)

MongoDB的鎖機制和一般關系數據庫如 MySQL(InnoDB), Oracle 有很大的差異,InnoDB 和 Oracle 能提供行級粒度鎖,而 MongoDB 只能提供 庫級粒度鎖,這意味著當 MongoDB 一個寫鎖處于占用狀態時,其它的讀寫操作都得干等。

初看起來庫級鎖在大并發環境下有嚴重的問題,但是 MongoDB 依然能夠保持大并發量和高性能,這是因為 MongoDB 的鎖粒度雖然很粗放,但是在鎖處理機制和關系數據庫鎖有很大差異,主要表現在:

  • MongoDB 沒有完整事務支持,操作原子性只到單個 document 級別,所以通常操作粒度比較小;
  • MongoDB 鎖實際占用時間是內存數據計算和變更時間,通常很快;
  • MongoDB 鎖有一種臨時放棄機制,當出現需要等待慢速 IO 讀寫數據時,可以先臨時放棄,等 IO 完成之后再重新獲取鎖。
  • </ul>

    通常不出問題不等于沒有問題,如果數據操作不當,依然會導致長時間占用寫鎖,比如下面提到的前臺建索引操作,當出現這種情況的時候,整個數據庫就處于完全阻塞狀態,無法進行任何讀寫操作,情況十分嚴重。

    解決問題的方法,盡量避免長時間占用寫鎖操作,如果有一些集合操作實在難以避免,可以考慮把這個集合放到一個單獨的 MongoDB 庫里,因為 MongoDB 不同庫鎖是相互隔離的,分離集合可以避免某一個集合操作引發全局阻塞問題。

    建索引導致數據庫阻塞

    坑爹指數:3星

    上面提到了 MongoDB 庫級鎖的問題,建索引就是一個容易引起長時間寫鎖的問題,MongoDB 在前臺建索引時需要占用一個寫鎖(而且不會臨時放棄),如果集合的數據量很大,建索引通常要花比較長時間,特別容易引起問題。

    解決的方法很簡單,MongoDB 提供了兩種建索引的訪問,一種是 background 方式,不需要長時間占用寫鎖,另一種是非 background 方式,需要長時間占用鎖。使用 background 方式就可以解決問題。
    例如,為超大表 posts 建立索引,
    千萬不用使用

    db.posts.ensureIndex({user_id: 1}) 

    而應該使用

    db.posts.ensureIndex({user_id: 1}, {background: 1}) 

    不合理使用嵌入 embed document

    坑爹指數:5星

    embed document 是 MongoDB 相比關系數據庫差異明顯的一個地方,可以在某一個 document 中嵌入其它子 document,這樣可以在父子 document 保持在單一 collection 中,檢索修改比較方便。

    比如薄荷的應用情景中有一個 Group document,用戶申請加入 Group 建模為 GroupRequest document,我們最初的時候使用 embed 方式把 GroupRequest 放置到 Group 中。
    Ruby 代碼如下所示(使用了 Mongoid ORM):

    class Group
      include Mongoid::Document
      ...
      embeds_many :group_requests
      ...
    end

    class GroupRequest include Mongoid::Document ... embedded_in :group ... end</pre>

    這個使用方式讓我們掉到坑里了,差點就爬不出來,它導致有接近兩周的時間系統問題,高峰時段常有幾分鐘的系統卡頓,最嚴重一次甚至引起 MongoDB 宕機。

    仔細分析后,發現某些活躍的 Group 的 group_requests 增加(當有新申請時)和更改(當通過或拒絕用戶申請時)異常頻繁,而這些操作經常長時間占用寫鎖,導致整個數據庫阻塞。原因是當有增加 group_request 操作時,Group 預分配的空間不夠,需要重新分配空間(內存和硬盤都需要),耗時較長,另外 Group 上建的索引很多,移動 Group 位置導致大量索引更新操作也很耗時,綜合起來引起了長時間占用鎖問題。

    解決問題的方法,說起來也簡單,就是把 embed 關聯更改成的普通外鍵關聯,就是類似關系數據庫的做法,這樣 group_request 增加或修改都只發生在 GroupRequest 上,簡單快速,避免長時間占用寫鎖問題。當關聯對象的數據不固定或者經常發生變化時,一定要避免使用 embed 關聯,不然會死的很慘。

    不合理使用 Array 字段

    坑爹指數:4星

    MongoDB 的 Array 字段是比較獨特的一個特性,它可以在單個 document 里存儲一些簡單的一對多關系。

    薄荷有一個應用情景使用遇到嚴重的性能問題,直接上代碼如下所示:

    class User
      include Mongoid::Document
      ...
      field :follower_user_ids, type: Array, default: []
      ...
    end

    User 中通過一個 Array 類型字段 follower_user_ids 保存用戶關注的人的 id,用戶關注的人從 10個到 3000 個不等,變化是比較頻繁的,和上面 embed 引發的問題類似,頻繁的 follower_user_ids 增加修改操作導致大量長時間數據庫寫鎖,從而引發 MongoDB 數據庫性能急劇下降。

    解決問題的方法:我們把 follower_user_ids 轉移到了內存數據庫 redis 中,避免了頻繁更改 MongoDB 中的 User, 從而徹底解決問題。如果不使用 redis,也可以建立一個 UserFollower 集合,使用外鍵形式關聯。

    先列舉上面幾個坑吧,都是害人不淺的陷阱,使用 MongoDB 過程一定要多加注意,避免掉到坑里。

    參考資料:

 本文由用戶 jopen 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
 轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
 本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!