Hadoop偽分布配置與基于Eclipse開發環境搭建
1、開發配置環境:
開發環境:Win7(64bit)+Eclipse(kepler service release 2)
配置環境:Ubuntu Server 14.04.1 LTS(64-bit only)
輔助工具:WinSCP + Putty
Hadoop版本:2.5.0
Hadoop的Eclipse開發插件(2.x版本適用):http://pan.baidu.com/s/1eQy49sm
服務器端JDK版本:OpenJDK7.0
以上所有工具請自行下載安裝。
2、Hadoop服務端配置(Master節點)
最近一直在摸索Hadoop2的配置,因為Hadoop2對原有的一些框架API做了調整,但也還是兼容舊版本的(包括配置)。像我這種就喜歡用新的東西的人,當然要嘗一下鮮了,現在網上比較少新版本的配置教程,那么下面我就來分享一下我自己的實戰經驗,如有不正確的地歡迎指正:)。
假設我們已經成功地安裝了Ubuntu Server、OpenJDK、SSH,如果還沒有安裝的話請先安裝,自己網上找一下教程,這里我就說一下SSH的無口令登陸設置。首先通過
$ ssh localhost
測試一下自己有沒有設置好無口令登陸,如果沒有設置好,系統將要求你輸入密碼,通過下面的設置可以實現無口令登陸,具體原理請百度谷歌:
$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa $ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
其次是Hadoop安裝(假設已經安裝好OpenJDK以及配置好了環境變量),到Hadoop官網下載一個Hadoop2.5.0版本的下來,好像大概有100多M的tar.gz包,下載 下來后自行解壓,我的是放在/usr/mywind下面,Hadoop主目錄完整路徑是/usr/mywind/hadoop,這個路徑根據你個人喜好放吧。
解壓完后,打開hadoop主目錄下的etc/hadoop/hadoop-env.sh文件,在最后面加入下面內容:
# set to the root of your Java installation export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64Assuming your installation directory is /usr/mywind/hadoop
export HADOOP_PREFIX=/usr/mywind/hadoop</pre>
為了方便起見,我建設把Hadoop的bin目錄及sbin目錄也加入到環境變量中,我是直接修改了Ubuntu的/etc/environment文件,內容如下:
PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/usr/lib/jvm/java-7-openjdk-amd64/bin:/usr/mywind/hadoop/bin:/usr/mywind/hadoop/sbin" JAVA_HOME="/usr/lib/jvm/java-7-openjdk-amd64" CLASSPATH=".:$JAVA_HOME/jre/lib/rt.jar:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar"也可以通過修改profile來完成這個設置,看個人習慣咯。假如上面的設置你都完成了,可以在命令行里面測試一下Hadoop命令,如下圖:
假如你能看到上面的結果,恭喜你,Hadoop安裝完成了。接下來我們可以進行偽分布配置(Hadoop可以在偽分布模式下運行單結點)。
接下來我們要配置的文件有四個,分別是/usr/mywind/hadoop/etc/hadoop目錄下的yarn-site.xml、mapred-site.xml、hdfs-site.xml、core-site.xml(注意:這個版本下默認沒有yarn-site.xml文件,但有個yarn-site.xml.properties文件,把后綴修改成前者即可),關于yarn新特性可以參考官網或者這個文章http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/。
首先是core-site.xml配置HDFS地址及臨時目錄(默認的臨時目錄在重啟后會刪除):
<configuration> <property> <name>fs.defaultFS</name> <value>hdfs://192.168.8.184:9000</value> <description>same as fs.default.name</description> </property> <property> <name>hadoop.tmp.dir</name> <value>/usr/mywind/tmp</value> <description>A base for other temporary directories.</description> </property> </configuration>然后是hdfs-site.xml配置集群數量及其他一些可選配置比如NameNode目錄、DataNode目錄等等:
<configuration> <property> <name>dfs.namenode.name.dir</name> <value>/usr/mywind/name</value> <description>same as dfs.name.dir</description> </property> <property> <name>dfs.datanode.data.dir</name> <value>/usr/mywind/data</value> <description>same as dfs.data.dir</description> </property> <property> <name>dfs.replication</name> <value>1</value> <description>same as old frame,recommend set the value as the cluster DataNode host numbers!</description> </property> </configuration>接著是mapred-site.xml配置啟用yarn框架:
<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> </configuration>最后是yarn-site.xml配置NodeManager:
<configuration> <!-- Site specific YARN configuration properties --> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> </configuration>注意,網上的舊版本教程可能會把value寫成mapreduce.shuffle,這個要特別注意一下的,至此我們所有的文件配置都已經完成了,下面進行HDFS文件系統進行格式化:
$ hdfs namenode -format然后啟用NameNode及DataNode進程:
$ start-yarn.sh然后創建hdfs文件目錄
$ hdfs dfs -mkdir /user $ hdfs dfs -mkdir /user/a01513注意,這個a01513是我在Ubuntu上的用戶名,最好保持與系統用戶名一致,據說不一致會有許多權限等問題,我之前試過改成其他名字,報錯,實在麻煩就改成跟系統用戶名一致吧。
然后把要測試的輸入文件放在文件系統中:
$ hdfs dfs -put /usr/mywind/psa input
文件內容是Hadoop經典的天氣例子的數據:
12345679867623119010123456798676231190101234567986762311901012345679867623119010123456+001212345678903456 12345679867623119010123456798676231190101234567986762311901012345679867623119010123456+011212345678903456 12345679867623119010123456798676231190101234567986762311901012345679867623119010123456+021212345678903456 12345679867623119010123456798676231190101234567986762311901012345679867623119010123456+003212345678903456 12345679867623119010123456798676231190201234567986762311901012345679867623119010123456+004212345678903456 12345679867623119010123456798676231190201234567986762311901012345679867623119010123456+010212345678903456 12345679867623119010123456798676231190201234567986762311901012345679867623119010123456+011212345678903456 12345679867623119010123456798676231190501234567986762311901012345679867623119010123456+041212345678903456 12345679867623119010123456798676231190501234567986762311901012345679867623119010123456+008212345678903456把文件拷貝到HDFS目錄之后,我們可以通過瀏覽器查看相關的文件及一些狀態:
http://192.168.8.184:50070/
這里的IP地址根據你實際的Hadoop服務器地址啦。
好吧,我們所有的Hadoop后臺服務搭建跟數據準備都已經完成了,那么我們的M/R程序也要開始動手寫了,不過在寫當然先配置開發環境了。
3、基于Eclipse的Hadoop2.x開發環境配置
關于JDK及ECLIPSE的安裝我就不再介紹了,相信能玩Hadoop的人對這種配置都已經再熟悉不過了,如果實在不懂建議到谷歌百度去搜索一下教程。假設你已經把Hadoop的Eclipse插件下載下來了,然后解壓把jar文件放到Eclipse的plugins文件夾里面:
重啟Eclipse即可。
然后我們再安裝Hadoop到Win7下,在這不再詳細說明,跟安裝JDK大同小異,在這個例子中我安裝到了E:\hadoop。
啟動Eclipse,點擊菜單欄的【Windows/窗口】→【Preferences/首選項】→【Hadoop Map/Reduce】,把Hadoop Installation Directory設置成開發機上的Hadoop主目錄:
點擊OK。
開發環境配置完成,下面我們可以新建一個測試Hadoop項目,右鍵【NEW/新建】→【Others、其他】,選擇Map/Reduce Project
輸入項目名稱點擊【Finish/完成】:
創建完成后可以看到如下目錄:
然后在SRC下建立下面包及類:
以下是代碼內容:
TestMapper.java
package com.my.hadoop.mapper; import java.io.IOException; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reporter; public class TestMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { private static final int MISSING = 9999; private static final Log LOG = LogFactory.getLog(TestMapper.class); public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,Reporter reporter) throws IOException { String line = value.toString(); String year = line.substring(15, 19); int airTemperature; if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs airTemperature = Integer.parseInt(line.substring(88, 92)); } else { airTemperature = Integer.parseInt(line.substring(87, 92)); } LOG.info("loki:"+airTemperature); String quality = line.substring(92, 93); LOG.info("loki2:"+quality); if (airTemperature != MISSING && quality.matches("[012459]")) { LOG.info("loki3:"+quality); output.collect(new Text(year), new IntWritable(airTemperature)); } } }TestReducer.java
package com.my.hadoop.reducer; import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.mapred.Reducer; public class TestReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { @Override public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output,Reporter reporter) throws IOException{ int maxValue = Integer.MIN_VALUE; while (values.hasNext()) { maxValue = Math.max(maxValue, values.next().get()); } output.collect(key, new IntWritable(maxValue)); } }TestHadoop.java
package com.my.hadoop.test.main; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import com.my.hadoop.mapper.TestMapper; import com.my.hadoop.reducer.TestReducer; public class TestHadoop { public static void main(String[] args) throws Exception{ if (args.length != 2) { System.err .println("Usage: MaxTemperature <input path> <output path>"); System.exit(-1); } JobConf job = new JobConf(TestHadoop.class); job.setJobName("Max temperature"); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setMapperClass(TestMapper.class); job.setReducerClass(TestReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); JobClient.runJob(job); } }為了方便對于Hadoop的HDFS文件系統操作,我們可以在Eclipse下面的Map/Reduce Locations窗口與Hadoop建立連接,直接右鍵新建Hadoop連接即可:
連接配置如下:
然后點擊完成即可,新建完成后,我們可以在左側目錄中看到HDFS的文件系統目錄:
這里不僅可以顯示目錄結構,還可以對文件及目錄進行刪除、新增等操作,非常方便。
當上面的工作都做好之后,就可以把這個項目導出來了(導成jar文件放到Hadoop服務器上運行):
點擊完成,然后把這個testt.jar文件上傳到Hadoop服務器(192.168.8.184)上,目錄(其實可以放到其他目錄,你自己喜歡)是:
/usr/mywind/hadoop/share/hadoop/mapreduce如下圖:
4、運行Hadoop程序及查看運行日志
當上面的工作準備好了之后,我們運行自己寫的Hadoop程序很簡單:
$ hadoop jar /usr/mywind/hadoop/share/hadoop/mapreduce/testt.jar com.my.hadoop.test.main.TestHadoop input output注意這是output文件夾名稱不能重復哦,假如你執行了一次,在HDFS文件系統下面會自動生成一個output文件夾,第二次運行時,要么把output文件夾先刪除($ hdfs dfs -rmr /user/a01513/output),要么把命令中的output改成其他名稱如output1、output2等等。
如果看到以下輸出結果,證明你的運行成功了:
a01513@hadoop :~$ hadoop jar /usr/mywind/hadoop/share/hadoop/mapreduce/testt.jar com.my.hadoop.test.main.TestHadoop input output 14/09/02 11:14:03 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0 :8032 14/09/02 11:14:04 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0 :8032 14/09/02 11:14:04 WARN mapreduce.JobSubmitter: Hadoop command-line option parsin g not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this. 14/09/02 11:14:04 INFO mapred.FileInputFormat: Total input paths to process : 1 14/09/02 11:14:04 INFO mapreduce.JobSubmitter: number of splits:2 14/09/02 11:14:05 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_14 09386620927_0015 14/09/02 11:14:05 INFO impl.YarnClientImpl: Submitted application application_14 09386620927_0015 14/09/02 11:14:05 INFO mapreduce.Job: The url to track the job: http://hadoop:80 88/proxy/application_1409386620927_0015/ 14/09/02 11:14:05 INFO mapreduce.Job: Running job: job_1409386620927_0015 14/09/02 11:14:12 INFO mapreduce.Job: Job job_1409386620927_0015 running in uber mode : false 14/09/02 11:14:12 INFO mapreduce.Job: map 0% reduce 0% 14/09/02 11:14:21 INFO mapreduce.Job: map 100% reduce 0% 14/09/02 11:14:28 INFO mapreduce.Job: map 100% reduce 100% 14/09/02 11:14:28 INFO mapreduce.Job: Job job_1409386620927_0015 completed successfully 14/09/02 11:14:29 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=105 FILE: Number of bytes written=289816 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=1638 HDFS: Number of bytes written=10 HDFS: Number of read operations=9 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=2 Launched reduce tasks=1 Data-local map tasks=2 Total time spent by all maps in occupied slots (ms)=14817 Total time spent by all reduces in occupied slots (ms)=4500 Total time spent by all map tasks (ms)=14817 Total time spent by all reduce tasks (ms)=4500 Total vcore-seconds taken by all map tasks=14817 Total vcore-seconds taken by all reduce tasks=4500 Total megabyte-seconds taken by all map tasks=15172608 Total megabyte-seconds taken by all reduce tasks=4608000 Map-Reduce Framework Map input records=9 Map output records=9 Map output bytes=81 Map output materialized bytes=111 Input split bytes=208 Combine input records=0 Combine output records=0 Reduce input groups=1 Reduce shuffle bytes=111 Reduce input records=9 Reduce output records=1 Spilled Records=18 Shuffled Maps =2 Failed Shuffles=0 Merged Map outputs=2 GC time elapsed (ms)=115 CPU time spent (ms)=1990 Physical memory (bytes) snapshot=655314944 Virtual memory (bytes) snapshot=2480295936 Total committed heap usage (bytes)=466616320 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=1430 File Output Format Counters Bytes Written=10 a01513@hadoop :~$
我們可以到Eclipse查看輸出的結果:
或者用命令行查看:
$ hdfs dfs -cat output/part-00000
假如你們發現運行后結果是為空的,可能到日志目錄查找相應的log.info輸出信息,log目錄在:/usr/mywind/hadoop/logs/userlogs 下面。
來自:http://my.oschina.net/lanzp/blog/309078