利用SQL處理CVS文件:CSVQuery
CSVQuery是一個用于處理CVS文件的便利 SQL Runner。你可以使用SQL來解析和過濾CSV行。
import scalikejdbc._
import csvquery._
implicit val session = autoCSVSession
// ---
// simple queries
val csv = CSV("./sample.csv", Seq("name", "age"))
val count: Long = withCSV(csv) { table =>
sql"select count(*) from $table".map(_.long(1)).single.apply().get
}
val records: Seq[Map[String, Any]] = withCSV(csv) { table =>
sql"select * from $table".toMap.list.apply()
}
// ---
// join queries
case class Account(name: String, companyName: String, company: Option[Company])
case class Company(name: String, url: String)
val (accountsCsv, companiesCsv) = (
CSV("src/test/resources/accounts.csv", Seq("name", "company_name")),
CSV("src/test/resources/companies.csv", Seq("name", "url"))
)
val accounts: Seq[Account] = withCSV(accountsCsv, companiesCsv) { (a, c) =>
sql"select a.name, a.company_name, c.url from $a a left join $c c on a.company_name = c.name".map { rs =>
new Account(
name = rs.get("name"),
companyName = rs.get("company_name"),
company = rs.stringOpt("url").map(url => Company(rs.get("company_name"), url))
)
}.list.apply()
}
// ---
// SkinnyCSVMapper examples
// also required: "org.skinny-framework" %% "skinny-orm"
// NOTICE: Compilation of DAO definitio on the REPL fails, use initialCommands instead.
case class User(name: String, age: Int)
object UserDAO extends SkinnyCSVMapper[User] {
def csv = CSV("./sample.csv", Seq("name", "age"))
override def extract(rs: WrappedResultSet, rn: ResultName[User]) = autoConstruct(rs, rn)
}
val users = UserDAO.findAll()
val alice = UserDAO.where('name -> "Alice").apply().headOption
本文由用戶 jopen 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!