GPU加速的Python深度學習庫:Hebel
Hebel是一個用在Python中的神經網絡深度學習庫。使用 GPU 加速利用CUDA通過 PyCUD實現。它實現了幾類最重要的神經網絡模型,提供各種激活函數和訓練模型,包括momentum、Nesterov momentum、dropout和early stopping。
Models
Right now, Hebel implements feed-forward neural networks for classification and regression on one or multiple tasks. Other models such as Autoencoder, Convolutional neural nets, and Restricted Boltzman machines are planned for the future.
Hebel implements dropout as well as L1 and L2 weight decay for regularization.
Optimization
Hebel implements stochastic gradient descent (SGD) with regular and Nesterov momentum.
Compatibility
Currently, Hebel will run on Linux and Windows, and probably Mac OS X (not tested).
Dependencies
- PyCUDA
- numpy
- PyYAML
- skdata (only for MNIST example)
Installation
Hebel is on PyPi, so you can install it with
pip install hebel
Getting started
Study the yaml configuration files in examples/
and run
python train_model.py examples/mnist_neural_net_shallow.yml
The script will create a directory in examples/mnist
where the models and logs are saved.
Read the Getting started guide at hebel.readthedocs.org/en/latest/getting_started.html for more information.
深度學習是機器學習研究中的一個新的領域,其動機在于建立、模擬人腦進行分析學習的神經網絡。