python_reference - Python資源匯總

jopen 9年前發布 | 29K 次閱讀 Python Python開發

有關python的腳本、技巧、教程、算法和一堆有意思的東東,大部分是IPython Notebook形式提供。


  • // Python tips and tutorials
  • // Python and the web
  • // Algorithms
  • // Plotting and Visualization
  • // Benchmarks
  • // Python and "Data Science"
  • // Other
  • // Useful scripts and snippets
  • // Links
  • </ul>

    // Python tips and tutorials

    [back to top]

    • A collection of not so obvious Python stuff you should know! [IPython nb]

      </li>

    • Python's scope resolution for variable names and the LEGB rule [IPython nb]

      </li>

    • Key differences between Python 2.x and Python 3.x [IPython nb]

      </li>

    • A thorough guide to SQLite database operations in Python [Markdown]

      </li>

    • Unit testing in Python - Why we want to make it a habit [Markdown]

      </li>

    • Installing Scientific Packages for Python3 on MacOS 10.9 Mavericks [Markdown]

      </li>

    • Sorting CSV files using the Python csv module [IPython nb]

      </li>

    • Using Cython with and without IPython magic [IPython nb]

      </li>

    • Parallel processing via the multiprocessing module [IPython nb]

      </li>

    • Entry point: Data - using sci-packages to prepare data for Machine Learning tasks and other data analyses [IPython nb]

      </li>

    • Awesome things that you can do in IPython Notebooks (in progress) [IPython nb]

      </li>

    • A collection of useful regular expressions [IPython nb]

      </li>

    • Quick guide for dealing with missing numbers in NumPy [IPython nb]

      </li>

    • A random collection of useful Python snippets [IPython nb]

      </li>

    • Things in pandas I wish I'd had known earlier [IPython nb]

      </li> </ul>


      // Python and the web

      [back to top]

      • Creating internal links in IPython Notebooks and Markdown docs [IPython nb]

        </li>

      • Converting Markdown to HTML and adding Python syntax highlighting [Markdown]

        </li> </ul>


        // Algorithms

        [back to top]

        The algorithms category has been moved to a separate GitHub repository rasbt/algorithms_in_ipython_notebooks

        • Sorting Algorithms [IPython nb]

          </li>

        • Linear regression via the least squares fit method [IPython nb]

          </li>

        • Dixon's Q test to identify outliers for small sample sizes [IPython nb]

          </li>

        • Sequential Selection Algorithms [IPython nb]

          </li>

        • Counting points inside a hypercube [IPython nb]

          </li> </ul>


          // Plotting and Visualization

          [back to top]

          The matplotlib-gallery in IPython notebooks has been moved to a separate GitHub repository matplotlib-gallery

          Featured articles:

          • Preparing Plots for Publication [IPython nb]
          • </ul>


            // Benchmarks

            [back to top]

            • Simple tricks to speed up the sum calculation in pandas [IPython nb]
            • </ul>


              More benchmarks can be found in the separate GitHub repository One-Python-benchmark-per-day

              Featured articles:

              • (C)Python compilers - Cython vs. Numba vs. Parakeet [IPython nb]

                </li>

              • Just-in-time compilers for NumPy array expressions [IPython nb]

                </li>

              • Cython - Bridging the gap between Python and Fortran [IPython nb]

                </li>

              • Parallel processing via the multiprocessing module [IPython nb]

                </li>

              • Vectorizing a classic for-loop in NumPy [IPython nb]

                </li> </ul>


                // Python and "Data Science"

                [back to top]

                The "data science"-related posts have been moved to a separate GitHub repository pattern_classification

                Featured articles:

                • Entry Point: Data - Using Python's sci-packages to prepare data for Machine Learning tasks and other data analyses [IPython nb]

                  </li>

                • About Feature Scaling: Standardization and Min-Max-Scaling (Normalization) [IPython nb]

                  </li>

                • Principal Component Analysis (PCA) [IPython nb]

                  </li>

                • Linear Discriminant Analysis (LDA) [IPython nb]

                  </li>

                • Kernel density estimation via the Parzen-window technique [IPython nb]

                  </li> </ul>


                  // Useful scripts and snippets

                  [back to top]

                  • watermark - An IPython magic extension for printing date and time stamps, version numbers, and hardware information.

                    </li>

                  • Shell script For prepending Python-shebangs to .py files.

                    </li>

                  • Convert 'tab-delimited' to 'comma-separated' CSV files [IPython nb]

                    </li>

                  • A random string generator function

                    </li> </ul>


                    // Links

                    [back to top]

                    • PyPI - the Python Package Index - The official repository for all open source Python modules and packages.

                      </li>

                    • PEP 8 - The official style guide for Python code.

                      </li> </ul>


                      // News

                      • Python subreddit - My favorite resource to catch up with Python news and great Python-related articles.

                        </li>

                      • Python community on Google+ - A nice and friendly community to share and discuss everything about Python.

                        </li>

                      • Python Weekly - A free weekly newsletter featuring curated news, articles, new releases, jobs etc. related to Python.

                        </li> </ul>


                        // Resources for learning Python

                        • Learn Python The Hard Way - The popular and probably most recommended resource for learning Python.

                          </li>

                        • Dive Into Python / Dive Into Python 3 - A free Python book for experienced programmers.

                          </li>

                        • The Hitchhiker’s Guide to Python - A free best-practice handbook for both novices and experts.

                          </li>

                        • Think Python - How to Think Like a Computer Scientist - An introduction for beginners starting with basic concepts of programming.

                          </li>

                        • Python Patterns - A directory of proven, reusable solutions to common programming problems.

                          </li> </ul>


                          // My favorite Python projects and packages

                          • The IPython Notebook - An interactive computational environment for combining code execution, documentation (with Markdown and LateX support), inline plots, and rich media all in one document.

                            </li>

                          • matplotlib - Python's favorite plotting library.

                            </li>

                          • NumPy - A library for multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.

                            </li>

                          • SciPy - A library that provides various useful functions for numerical computing, such as modules for optimization, linear algebra, integration, interpolation, ...

                            </li>

                          • pandas - High-performance, easy-to-use data structures and data analysis tools build on top of NumPy.

                            </li>

                          • Cython - C-extensions for Python, an optimizing static compiler to combine Python and C code.

                            </li>

                          • Numba - A just-in-time specializing compiler which compiles annotated Python and NumPy code to LLVM (through decorators)

                            </li>

                          • scikit-learn - A powerful machine learning library for Python and tools for efficient data mining and analysis.

                            </li> </ul> https://github.com/rasbt/python_reference

 本文由用戶 jopen 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
 轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
 本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!