Python下的PPCA庫:pca-magic

jopen 11年前發布 | 19K 次閱讀 pca-magic 機器學習

Python下的PPCA庫,相比Scikit-Learn里的實現,該庫能更好的處理缺失數據,并基于另外的數據集進行插值。

Install via pip:

pip install ppca

Load in the data which should be arranged asn_samplesbyfeatures. As usual, you should make sure your data is stationary (take first differences if possible) and standardized.

from ppca import PPCA
ppca = PPCA(data)

Fit the model with parameterdspecifying the number of components and verbose printing convergence output if required.

ppca.fit(d=100, verbose=True)

The model parameters and components will be attached to the ppca object.

variance_explained = ppca.var_exp
components = ppca.X
model_params = ppca.C

If you want the principal components, calltransform.

component_mat = ppca.transform()

Post fitting the model, save the model if you want.

ppca.save('mypcamodel')

Load a model, post instantiating a PPCA object. This will make fitting/transforming much faster.

ppca.load('mypcamodel.npy')

項目主頁:http://www.baiduhome.net/lib/view/home/1424920226687

 本文由用戶 jopen 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
 轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
 本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!