linux上mysql優化

gf67 9年前發布 | 16K 次閱讀 MySQL 數據庫服務器 Linux

現在MySQL運行的大部分環境都是在Linux上的,如何在Linux操作系統上根據MySQL進行優化,我們這里給出一些通用簡單的策略。這些方法都有助于改進MySQL的性能。 
閑話少說,進入正題。

 

一、CPU

首先從CPU說起。 
你仔細檢查的話,有些服務器上會有的一個有趣的現象:你cat /proc/cpuinfo時,會發現CPU的頻率竟然跟它標稱的頻率不一樣:

#cat /proc/cpuinfo 
    processor : 5
    model name : Intel(R) Xeon(R) CPU E5-2620 0 @2.00GHz ...
    cpu MHz : 1200.000 

這個是Intel E5-2620的CPU,他是2.00G * 24的CPU,但是,我們發現第5顆CPU的頻率為1.2G。 
這是什么原因列? 
這些其實都源于CPU最新的技術:節能模式。操作系統和CPU硬件配合,系統不繁忙的時候,為了節約電能和降低溫度,它會將CPU降頻。這對環保人士和抵制地球變暖來說是一個福音,但是對MySQL來說,可能是一個災難。 
為了保證MySQL能夠充分利用CPU的資源,建議設置CPU為最大性能模式。這個設置可以在BIOS和操作系統中設置,當然,在BIOS中設置該選項更好,更徹底。由于各種BIOS類型的區別,設置為CPU為最大性能模式千差萬別,我們這里就不具體展示怎么設置了。

 

二、內存

然后我們看看內存方面,我們有哪些可以優化的。

i)我們先看看numa 
非一致存儲訪問結構 (NUMA : Non-Uniform Memory Access) 也是最新的內存管理技術。它和對稱多處理器結構 (SMP : Symmetric Multi-Processor) 是對應的。簡單的隊別如下:

linux上mysql優化

如圖所示,詳細的NUMA信息我們這里不介紹了。但是我們可以直觀的看到:SMP訪問內存的都是代價都是一樣的;但是在NUMA架構下,本地內存的訪問和 非本地內存的訪問代價是不一樣的。對應的根據這個特性,操作系統上,我們可以設置進程的內存分配方式。目前支持的方式包括:

   
    

--interleave=nodes --membind=nodes --cpunodebind=nodes --physcpubind=cpus --localalloc --preferred=node

簡而言之,就是說,你可以指定內存在本地分配,在某幾個CPU節點分配或者輪詢分配。除非是設置為--interleave=nodes輪詢分配方式,即 內存可以在任意NUMA節點上分配這種方式以外。其他的方式就算其他NUMA節點上還有內存剩余,Linux也不會把剩余的內存分配給這個進程,而是采用 SWAP的方式來獲得內存。有經驗的系統管理員或者DBA都知道SWAP導致的數據庫性能下降有多么坑爹。 
所以最簡單的方法,還是關閉掉這個特性。 
關閉特性的方法,分別有:可以從BIOS,操作系統,啟動進程時臨時關閉這個特性。 
a)由于各種BIOS類型的區別,如何關閉NUMA千差萬別,我們這里就不具體展示怎么設置了。 
b)在操作系統中關閉,可以直接在/etc/grub.conf的kernel行最后添加numa=off,如下所示: 

kernel /vmlinuz-2.6.32-220.el6.x86_64 ro root=/dev/mapper/VolGroup-root rd_NO_LUKS LANG=en_US.UTF-8 rd_LVM_LV=VolGroup/root rd_NO_MD quiet SYSFONT=latarcyrheb-sun16 rhgb crashkernel=auto rd_LVM_LV=VolGroup/swap rhgb crashkernel=auto quiet KEYBOARDTYPE=pc KEYTABLE=us rd_NO_DM  numa=off 


另外可以設置 vm.zone_reclaim_mode=0盡量回收內存。 
c)啟動MySQL的時候,關閉NUMA特性: 
 numactl --interleave=all  mysqld &

當然,最好的方式是在BIOS中關閉。

 

ii)我們再看看vm.swappiness。

vm.swappiness是操作系統控制物理內存交換出去的策略。它允許的值是一個百分比的值,最小為0,最大運行100,該值默認為60。vm.swappiness設置為0表示盡量少swap,100表示盡量將inactive的內存頁交換出去。 
具體的說:當內存基本用滿的時候,系統會根據這個參數來判斷是把內存中很少用到的inactive 內存交換出去,還是釋放數據的cache。cache中緩存著從磁盤讀出來的數據,根據程序的局部性原理,這些數據有可能在接下來又要被讀 取;inactive 內存顧名思義,就是那些被應用程序映射著,但是“長時間”不用的內存。 
我們可以利用vmstat看到inactive的內存的數量: 

#vmstat -an 1 
 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- 
 r b swpd free  inact  active si so bi bo in cs us sy id wa st 
 1 0 0 27522384 326928 1704644 0 0 0 153 11 10 0 0 100 0 0 
 0 0 0 27523300 326936 1704164 0 0 0 74 784 590 0 0 100 0 0 
 0 0 0 27523656 326936 1704692 0 0 8 8 439 1686 0 0 100 0 0 
 0 0 0 27524300 326916 1703412 0 0 4 52 198 262 0 0 100 0 0

通過/proc/meminfo 你可以看到更詳細的信息: 

#cat /proc/meminfo | grep -i inact 
 Inactive: 326972 kB 
 Inactive(anon): 248 kB 
 Inactive(file): 326724 kB

這里我們對不活躍inactive內存進一步深入討論。Linux中,內存可能處于三種狀態:free,active和inactive。眾所周 知,Linux Kernel在內部維護了很多LRU列表用來管理內存,比如LRU_INACTIVE_ANON, LRU_ACTIVE_ANON, LRU_INACTIVE_FILE , LRU_ACTIVE_FILE, LRU_UNEVICTABLE。其中LRU_INACTIVE_ANON, LRU_ACTIVE_ANON用來管理匿名頁,LRU_INACTIVE_FILE , LRU_ACTIVE_FILE用來管理page caches頁緩存。系統內核會根據內存頁的訪問情況,不定時的將活躍active內存被移到inactive列表中,這些inactive的內存可以被 交換到swap中去。 
一般來說,MySQL,特別是InnoDB管理內存緩存,它占用的內存比較多,不經常訪問的內存也會不少,這些內存如果被Linux錯誤的交換出去了,將 浪費很多CPU和IO資源。 InnoDB自己管理緩存,cache的文件數據來說占用了內存,對InnoDB幾乎沒有任何好處。 
所以,我們在MySQL的服務器上最好設置vm.swappiness=0。

我們可以通過在sysctl.conf中添加一行: 

echo "vm.swappiness = 0" >>/etc/sysctl.conf

并使用sysctl -p來使得該參數生效。

 

三、文件系統

最后,我們看一下文件系統的優化 
i)我們建議在文件系統的mount參數上加上noatime,nobarrier兩個選項。

用noatime mount的話,文件系統在程序訪問對應的文件或者文件夾時,不會更新對應的access time。一般來說,Linux會給文件記錄了三個時間,change time, modify time和access time。 
我們可以通過stat來查看文件的三個時間: 

stat libnids-1.16.tar.gz 
 File: `libnids-1.16.tar.gz' 
 Size: 72309 Blocks: 152 IO Block: 4096 regular file 
 Device: 302h/770d Inode: 4113144 Links: 1 
 Access: (0644/-rw-r--r--) Uid: ( 0/ root) Gid: ( 0/ root)  Access  : 2008-05-27 15:13:03.000000000 +0800 
 Modify: 2004-03-10 12:25:09.000000000 +0800 
 Change: 2008-05-27 14:18:18.000000000 +0800

其中access time指文件最后一次被讀取的時間,modify time指的是文件的文本內容最后發生變化的時間,change time指的是文件的inode最后發生變化(比如位置、用戶屬性、組屬性等)的時間。一般來說,文件都是讀多寫少,而且我們也很少關心某一個文件最近什 么時間被訪問了。 
所以,我們建議采用noatime選項,這樣文件系統不記錄access time,避免浪費資源。 
現在的很多文件系統會在數據提交時強制底層設備刷新cache,避免數據丟失,稱之為write barriers。但是,其實我們數據庫服務器底層存儲設備要么采用RAID卡,RAID卡本身的電池可以掉電保護;要么采用Flash卡,它也有自我保 護機制,保證數據不會丟失。所以我們可以安全的使用nobarrier掛載文件系統。設置方法如下: 
對于ext3, ext4和 reiserfs文件系統可以在mount時指定barrier=0;對于xfs可以指定nobarrier選項。

 

ii)文件系統上還有一個提高IO的優化萬能鑰匙,那就是deadline。

在Flash技術之前,我們都是使用機械磁盤存儲數據的,機械磁盤的尋道時間是影響它速度的最重要因素,直接導致它的每秒可做的IO(IOPS)非常有 限,為了盡量排序和合并多個請求,以達到一次尋道能夠滿足多次IO請求的目的,Linux文件系統設計了多種IO調度策略,已適用各種場景和存儲設備。 
Linux的IO調度策略包括:Deadline scheduler,Anticipatory scheduler,Completely Fair Queuing(CFQ),NOOP。每種調度策略的詳細調度方式我們這里不詳細描述,這里我們主要介紹CFQ和Deadline,CFQ是Linux內 核2.6.18之后的默認調度策略,它聲稱對每一個 IO 請求都是公平的,這種調度策略對大部分應用都是適用的。但是如果數據庫有兩個請求,一個請求3次IO,一個請求10000次IO,由于絕對公平,3次IO 的這個請求都需要跟其他10000個IO請求競爭,可能要等待上千個IO完成才能返回,導致它的響應時間非常慢。并且如果在處理的過程中,又有很多IO請 求陸續發送過來,部分IO請求甚至可能一直無法得到調度被“餓死”。而deadline兼顧到一個請求不會在隊列中等待太久導致餓死,對數據庫這種應用來 說更加適用。 
實時設置,我們可以通過 

echo deadline >/sys/block/sda/queue/scheduler

來將sda的調度策略設置為deadline。

我們也可以直接在/etc/grub.conf的kernel行最后添加elevator=deadline來永久生效。

 

 

總結 

CPU方面 
    關閉電源保護模式

內存: 
    vm.swappiness = 0 
    關閉numa

文件系統: 
    用noatime,nobarrier掛載系統 
    IO調度策略修改為deadline。

 本文由用戶 gf67 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
 轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
 本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!