Theano-lights:基于Theano的深度學習研究框架
Theano-Lights是一個基于Theano的深度學習研究框架,提供了Several recent Deep learning 模型實現和一個便利的訓練和測試功能。The models are not hidden and spread out behind layers of abstraction as in most deep learning platforms to enable transparency and flexiblity during learning and research.
Included models:- Feedforward neural network (FFN)
- Convolutional neural network (CNN)
- Recurrent neural networks (RNN)
- Variational autoencoder (VAE)
- Convolutional Variational autoencoder (CVAE)
- Deep Recurrent Attentive Writer (DRAW)
- LSTM language model
- Batch normalization
- Dropout
- LSTM, GRU and SCRN recurrent layers
- Virtual adversarial training (Miyato et al., 2015)
- Contractive cost (Rifai et al., 2011)
- SGD with momentum
- SGD Langevin dynamics
- Rmsprop
- Adam
- Adam with gradient clipping
- Walk-forward learning for non-stationary data (data with concept drift)
- MNIST
- MNIST
- Frey Faces
- Penn Treebank
- text8
- Auto-classifier-encoder (Georgiev, 2015)
- Radias basis function neural network
- Denoising autoencoder with lateral connections
- Natural neural networks (Desjardins et al., 2015)
- Ladder network (Rasmus et al., 2015)
- Virtual adversarial training for CNN and RNN
本文由用戶 jopen 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!