celery集群管理實現
本來這個方案打算用在我的Sora上,但是因為某些問題打算棄用celery。但既然有人想問怎樣實現多機器的管理,那就寫出來了:
架構:
這里作為例子的celery app為myapp:
root@workgroup0:~/celeryapp# ls myapp agent.py celery.py config.py __init__.py root@workgroup0:~/celeryapp#
公用代碼部分:
celery.py:(備注:172.16.77.175是任務發布節點的ip地址)
from future import absolute_import
from celery import Celery
app = Celery('myapp',
broker='amqp://guest@172.16.77.175//',
backend='amqp://guest@172.16.77.175//',
include=['myapp.agent'])
app.config_from_object('myapp.config')
if name == 'main':
app.start()</pre>
config.py:
from future import absolute_import
from kombu import Queue,Exchange
from datetime import timedelta
CELERY_TASK_RESULT_EXPIRES=3600
CELERY_TASK_SERIALIZER='json'
CELERY_ACCEPT_CONTENT=['json']
CELERY_RESULT_SERIALIZER='json'
CELERY_DEFAULT_EXCHANGE = 'agent'
CELERY_DEFAULT_EXCHANGE_TYPE = 'direct'
CELERT_QUEUES = (
Queue('machine1',exchange='agent',routing_key='machine1'),
Queue('machine2',exchange='agent',routing_key='machine2'),
)</pre>
__init__.py:(空白)
任務發布節點的agent.py:
from future import absolute_import
from myapp.celery import app
@app.task
def add(x,y):
return {'the value is ':str(x+y)}
@app.task
def writefile():
out=open('/tmp/data.txt','w')
out.write('hello'+'\n')
out.close()
@app.task
def mul(x,y):
return x*y
@app.task
def xsum(numbers):
return sum(numbers)
@app.task
def getl(stri):
return getlength(stri)
def getlength(stri):
return len(stri)</pre>
docker1上的agent.py:
from future import absolute_import
from myapp.celery import app
@app.task
def add(x,y):
return {'value':str(x+y),'node_name':'docker1'} #增加了node_name用來識別節點
@app.task
def writefile():
out=open('/tmp/data.txt','w')
out.write('hello'+'\n')
out.close()
@app.task
def mul(x,y):
return x*y
@app.task
def xsum(numbers):
return sum(numbers)
@app.task
def getl(stri):
return getlength(stri)
def getlength(stri):
return len(stri)</pre>
docker2上的:
from future import absolute_import
from myapp.celery import app
@app.task
def add(x,y):
return {'value':str(x+y),'node_name':'docker2'}
@app.task
def writefile():
out=open('/tmp/data.txt','w')
out.write('hello'+'\n')
out.close()
@app.task
def mul(x,y):
return x*y
@app.task
def xsum(numbers):
return sum(numbers)
@app.task
def getl(stri):
return getlength(stri)
def getlength(stri):
return len(stri)</pre>
在這個例子中我只測試add()函數:
在docker1節點上啟動worker:(用-Q指定監聽的queue)
root@workgroup1:~/celeryapp# celery -A myapp worker -l info -Q machine1
/usr/local/lib/python2.7/dist-packages/celery/platforms.py:766: RuntimeWarning: You are running the worker with superuser privileges, which is
absolutely not recommended!
Please specify a different user using the -u option.
User information: uid=0 euid=0 gid=0 egid=0
uid=uid, euid=euid, gid=gid, egid=egid,
-------------- celery@workgroup1.hzg.com v3.1.17 (Cipater)
---- * -----
--- * -- Linux-3.13.0-24-generic-x86_64-with-Ubuntu-14.04-trusty
-- - ** ---
- ---------- [config]
- ---------- .> app: myapp:0x7f472d73f190
- ---------- .> transport: amqp://guest:@172.16.77.175:5672//
- ---------- .> results: amqp://guest@172.16.77.175//
- --- --- .> concurrency: 1 (prefork)
-- * ----
--- * ----- [queues]
-------------- .> machine1 exchange=machine1(direct) key=machine1
[tasks]
. myapp.agent.add
. myapp.agent.getl
. myapp.agent.mul
. myapp.agent.writefile
. myapp.agent.xsum
[2015-10-18 15:07:51,313: INFO/MainProcess] Connected to amqp://guest:**@172.16.77.175:5672//
[2015-10-18 15:07:51,340: INFO/MainProcess] mingle: searching for neighbors
[2015-10-18 15:07:52,372: INFO/MainProcess] mingle: sync with 1 nodes
[2015-10-18 15:07:52,374: INFO/MainProcess] mingle: sync complete
[2015-10-18 15:07:52,423: WARNING/MainProcess] celery@workgroup1.hzg.com ready.</pre>
啟動docker2上的worker:
root@workgroup2:~/celeryapp# celery -A myapp worker -l info -Q machine2
/usr/local/lib/python2.7/dist-packages/celery/platforms.py:766: RuntimeWarning: You are running the worker with superuser privileges, which is
absolutely not recommended!
Please specify a different user using the -u option.
User information: uid=0 euid=0 gid=0 egid=0
uid=uid, euid=euid, gid=gid, egid=egid,
-------------- celery@workgroup2.hzg.com v3.1.18 (Cipater)
---- * -----
--- * -- Linux-3.13.0-24-generic-x86_64-with-Ubuntu-14.04-trusty
-- - ** ---
- ---------- [config]
- ---------- .> app: myapp:0x7f708cb8ec10
- ---------- .> transport: amqp://guest:@172.16.77.175:5672//
- ---------- .> results: amqp://guest@172.16.77.175//
- --- --- .> concurrency: 1 (prefork)
-- * ----
--- * ----- [queues]
-------------- .> machine2 exchange=machine2(direct) key=machine2
[tasks]
. myapp.agent.add
. myapp.agent.getl
. myapp.agent.mul
. myapp.agent.writefile
. myapp.agent.xsum
[2015-10-18 15:08:52,114: INFO/MainProcess] Connected to amqp://guest:**@172.16.77.175:5672//
[2015-10-18 15:08:52,144: INFO/MainProcess] mingle: searching for neighbors
[2015-10-18 15:08:53,174: INFO/MainProcess] mingle: sync with 1 nodes
[2015-10-18 15:08:53,176: INFO/MainProcess] mingle: sync complete
[2015-10-18 15:08:53,227: WARNING/MainProcess] celery@workgroup2.hzg.com ready.</pre>
在任務發布節點發布一個計算任務給docker1:
root@workgroup0:~/celeryapp# ls
default.etcd hots.sh hotswap.py myapp myapp1tmp people.db resp sora test.py
root@workgroup0:~/celeryapp# python
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from myapp.agent import add
>>> res = add.apply_async(args=[122,34],queue='machine1',routing_key='machine1')
>>> res.get()
{u'value': u'156', u'node_name': u'docker1'} 用get()可以看到來自docker1的返回,再看看docker1的顯示:
[2015-10-18 15:11:51,217: INFO/MainProcess] Task myapp.agent.add[c487a9a2-e5cc-462b-a131-784b363a1952] succeeded in 0.03602907s: {'value': '156', 'node_name': 'docker1'} 至于docker2,一點沒動:
[2015-10-18 15:08:53,176: INFO/MainProcess] mingle: sync complete
[2015-10-18 15:08:53,227: WARNING/MainProcess] celery@workgroup2.hzg.com ready.
發布一個任務給docker2:
>>> res = add.apply_async(args=[1440,900],queue='machine2',routing_key='machine2')
>>> res.get()
{u'value': u'2340', u'node_name': u'docker2'}
>>>
因為在配置文件中已經定義好了默認的exchange,因此只需指定queue和routing key即可把任務發到指定的節點上。但是這樣的架構不容易增刪節點(我的項目就是如此),我還是研究了一個使用actor模型+etcd任務持久化的架構開發Sora。
總結:這樣一來,就可以實現集群的管理。但是任務發布節點必須維護一個queue與routing key的記錄,以便指定集群中的節點執行任務。建議根據情況改變exchange的設置,節點多的時候不應該只用一個default exchange。