機器學習各類工具weka、scikit-learn等各項指標的對比
以下表格摘自:http://www.shogun-toolbox.org/
另推薦機器學習軟件匯總網站 http://mloss.org/software/
| feature | shogun | weka | kernlab | dlib | nieme | orange | java-ml | pyML | mlpy | pybrain | torch3 | scikit-learn | </tr> </tbody>|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| General Features | Graphical User Interface | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
| One Class Classification | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Classification | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Multiclass classification | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Regression | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Structured Output Learning | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Pre-Processing | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Built-in Model Selection Strategies | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Visualization | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Test Framework | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Large Scale Learning | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Semi-supervised Learning | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Multitask Learning | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Domain Adaptation | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Serialization | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Parallelized Code | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Performance Measures (auROC etc) | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Image Processing | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
</tbody>
|
| Supported Operating Systems | Linux | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
| Windows | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Mac OSX | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Other Unix | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
</tbody>
|
| Language Bindings | Python | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
| R | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Matlab | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Octave | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| C/C++ | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Command Line | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Java | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| C# | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Lua | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Ruby | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
</tbody>
|
| SVM Solvers | SVMLight | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
| LibSVM | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| SVM Ocas | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| LibLinear | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| BMRM | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| LaRank | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| SVMPegasos | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| SVM SGD | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| other | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
</tbody>
|
| Regression | Kernel Ridge Regression | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
| Support Vector Regression | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Gaussian Processes | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Relevance Vector Machine | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
</tbody>
|
| Multiple Kernel Learning | MKL | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
| q-norm MKL | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
</tbody>
|
| Classifiers | Naive Bayes | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
| Bayesian Networks | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Multi Layer Perceptron | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| RBF Networks | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Logistic Regression | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| LASSO | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Decision Trees | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| k-NN | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
</tbody>
|
| Linear Classifiers | Linear Programming Machine | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
| LDA | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
</tbody>
|
| Distributions | Markov Chains | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
| Hidden Markov Models | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
</tbody>
|
| Kernels | Linear | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
| Gaussian | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Polynomial | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| String Kernels | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Sigmoid Kernel | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Kernel Normalizer | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
</tbody>
|
| Feature Selection | Forward | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
| Wrapper methods | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Recursive Feature Selection | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
</tbody>
|
| Missing Features | Mean value imputation | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
| EM-based/model based imputation | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
</tbody>
|
| Clustering | Hierarchical Clustering | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
| k-means | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
</tbody>
|
| Optimization | BFGS | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
| conjugate gradient | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| gradient descent | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| bindings to CPLEX | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| bindings to Mosek | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| bindings to other solver | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
</tbody>
|
| Supported File Formats | Binary | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
| Arff | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| HDF5 | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| CSV | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| libSVM/ SVMLight format | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Excel | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
</tbody>
|
| Supported Data Types | Sparse Data Representation | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
| Dense Matrices | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Strings | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|
| Support for native (e.g. C) types (char, signed and unsigned int8, int16, int32, int64, float, double, long double) | |
|
|
|
|
|
|
|
|
|
|
|
</tr>
|