python編寫的最短路徑算法
原文出處: 初行
一心想學習算法,很少去真正靜下心來去研究,前幾天趁著周末去了解了最短路徑的資料,用python寫了一個最短路徑算法。算法是基于帶權無向圖去尋找兩個點之間的最短路徑,數據存儲用鄰接矩陣記錄。首先畫出一幅無向圖如下,標出各個節點之間的權值。
一心想學習算法,很少去真正靜下心來去研究,前幾天趁著周末去了解了最短路徑的資料,用python寫了一個最短路徑算法。算法是基于帶權無向圖去尋找兩個點之間的最短路徑,數據存儲用鄰接矩陣記錄。首先畫出一幅無向圖如下,標出各個節點之間的權值。
其中對應索引:
A ——> 0
B——> 1
C——> 2
D——>3
E——> 4
F——> 5
G——> 6
鄰接矩陣表示無向圖:
算法思想是通過Dijkstra算法結合自身想法實現的。大致思路是:從起始點開始,搜索周圍的路徑,記錄每個點到起始點的權值存到已標記權值節點字典A,將起始點存入已遍歷列表B,然后再遍歷已標記權值節點字典A,搜索節點周圍的路徑,如果周圍節點存在于表B,比較累加權值,新權值小于已有權值則更新權值和來源節點,否則什么都不做;如果不存在與表B,則添加節點和權值和來源節點到表A,直到搜索到終點則結束。
這時最短路徑存在于表A中,得到終點的權值和來源路徑,向上遞推到起始點,即可得到最短路徑,下面是代碼:
# -*-coding:utf-8 -*- class DijkstraExtendPath ( ) : def __init__ ( self , node_map ) : self . node_map = node_map self . node_length = len ( node_map ) self . used_node_list = [ ] self . collected_node_dict = { } def __call__ ( self , from_node , to_node ) : self . from_node = from_node self . to_node = to_node self . _init_dijkstra ( ) return self . _format_path ( ) def _init_dijkstra ( self ) : self . used_node_list . append ( self . from_node ) self . collected_node_dict [ self . from_node ] = [ 0 , - 1 ] for index1 , node1 in enumerate ( self . node_map [ self . from_node ] ) : if node1 : self . collected_node_dict [ index1 ] = [ node1 , self . from_node ] self . _foreach_dijkstra ( ) def _foreach_dijkstra ( self ) : if len ( self . used_node_list ) == self . node_length - 1 : return for key , val in self . collected_node_dict . items ( ) : # 遍歷已有權值節點 if key not in self . used_node_list and key != to_node : self . used_node_list . append ( key ) else : continue for index1 , node1 in enumerate ( self . node_map [ key ] ) : # 對節點進行遍歷 # 如果節點在權值節點中并且權值大于新權值 if node1 and index1 in self . collected_node_dict and self . collected_node_dict [ index1 ] [ 0 ] > node1 + val [ 0 ] : self . collected_node_dict [ index1 ] [ 0 ] = node1 + val [ 0 ] # 更新權值 self . collected_node_dict [ index1 ] [ 1 ] = key elif node1 and index1 not in self . collected_node_dict : self . collected_node_dict [ index1 ] = [ node1 + val [ 0 ] , key ] self . _foreach_dijkstra ( ) def _format_path ( self ) : node_list = [ ] temp_node = self . to_node node_list . append ( ( temp_node , self . collected_node_dict [ temp_node ] [ 0 ] ) ) while self . collected_node_dict [ temp_node ] [ 1 ] != - 1 : temp_node = self . collected_node_dict [ temp_node ] [ 1 ] node_list . append ( ( temp_node , self . collected_node_dict [ temp_node ] [ 0 ] ) ) node_list . reverse ( ) return node_list def set_node_map ( node_map , node , node_list ) : for x , y , val in node_list : node_map [ node . index ( x ) ] [ node . index ( y ) ] = node_map [ node . index ( y ) ] [ node . index ( x ) ] = val if __name__ == "__main__" : node = [ 'A' , 'B' , 'C' , 'D' , 'E' , 'F' , 'G' ] node_list = [ ( 'A' , 'F' , 9 ) , ( 'A' , 'B' , 10 ) , ( 'A' , 'G' , 15 ) , ( 'B' , 'F' , 2 ) , ( 'G' , 'F' , 3 ) , ( 'G' , 'E' , 12 ) , ( 'G' , 'C' , 10 ) , ( 'C' , 'E' , 1 ) , ( 'E' , 'D' , 7 ) ] node_map = [ [ 0 for val in xrange ( len ( node ) ) ] for val in xrange ( len ( node ) ) ] set_node_map ( node_map , node , node_list ) # A -->; D from_node = node . index ( 'A' ) to_node = node . index ( 'D' ) dijkstrapath = DijkstraPath ( node_map ) path = dijkstrapath ( from_node , to_node ) print path
運行結果:
再來一例:
# -*- coding: utf-8 -*- import itertools import re import math def combination ( lst ) : # 全排序 lists = [ ] liter = itertools . permutations ( lst ) for lts in list ( liter ) : lt = '' . join ( lts ) lists . append ( lt ) return lists def coord ( lst ) : # 坐標輸入 coordinates = dict ( ) print u '請輸入坐標:(格式為A:7 17)' p = re . compile ( r "d+" ) for char in lst : str = raw_input ( char + ':' ) dot = p . findall ( str ) coordinates [ char ] = [ dot [ 0 ] , dot [ 1 ] ] print coordinates return coordinates def repeat ( lst ) : # 刪除重復組合 for ilist in lst : for k in xrange ( len ( ilist ) ) : st = ( ilist [ k : ] , ilist [ : k ] ) strs = '' . join ( st ) for jlist in lst : if ( cmp ( strs , jlist ) == 0 ) : lst . remove ( jlist ) for k in xrange ( len ( ilist ) ) : st = ( ilist [ k : ] , ilist [ : k ] ) strs = '' . join ( st ) for jlist in lst : if ( cmp ( strs [ :: - 1 ] , jlist ) == 0 ) : lst . remove ( jlist ) lst . append ( ilist ) print lst return lst def count ( lst , coordinates ) : # 計算各路徑 way = dict ( ) for str in lst : str = str + str [ : 1 ] length = 0 for i in range ( len ( str ) - 1 ) : x = abs ( float ( coordinates [ str [ i ] ] [ 0 ] ) - float ( coordinates [ str [ i + 1 ] ] [ 0 ] ) ) y = abs ( float ( coordinates [ str [ i ] ] [ 1 ] ) - float ( coordinates [ str [ i + 1 ] ] [ 1 ] ) ) length += math . sqrt ( x * * 2 + y * * 2 ) way [ str [ : len ( str ) - 1 ] ] = length return way if __name__ == "__main__" : print u '請輸入圖節點:' rlist = list ( raw_input ( ) ) coordinates = coord ( rlist ) list_directive = combination ( rlist ) # print "有方向完全圖所有路徑為:",list_directive # for it in list_directive: # print it print u '有方向完全圖所有路徑總數:' , len ( list_directive ) , "n" # 無方向完全圖 list_directive = repeat ( list_directive ) list_directive = repeat ( list_directive ) # print "無方向完全圖所有路徑為:",list_directive print u '無方向完全圖所有路徑為:' for it in list_directive : print it print u '無方向完全圖所有路徑總數:' , len ( list_directive ) ways = count ( list_directive , coordinates ) print u '路徑排序如下:' for dstr in sorted ( ways . iteritems ( ) , key = lambda d : d [ 1 ] , reverse = False ) : print dstr raw_input ( )
以上就是本文給大家分享的全部內容了,希望大家能夠喜歡,能夠學習python有所幫助。
本文由用戶 jopen 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!