Spark MLlib實現的廣告點擊預測–Gradient
來自: http://my.oschina.net/u/2605101/blog/608842
本文嘗試使用Spark提供的機器學習算法 Gradient-Boosted Trees來預測一個用戶是否會點擊廣告。
訓練和測試數據使用Kaggle Avazu CTR 比賽的樣例數據,下載地址:https://www.kaggle.com/c/avazu-ctr-prediction/data
數據格式如下:
包含24個字段:
1-id: ad identifier
2-click: 0/1 for non-click/click
3-hour: format is YYMMDDHH, so 14091123 means 23:00 on Sept. 11, 2014 UTC.
4-C1 — anonymized categorical variable
5-banner_pos
6-site_id
7-site_domain
8-site_category
9-app_id
10-app_domain
11-app_category
12-device_id
13-device_ip
14-device_model
15-device_type
16-device_conn_type
17~24—C14-C21 — anonymized categorical variables
</ul>
其中5到15列為分類特征,16~24列為數值型特征。
Spark代碼如下:
package com.lxw1234.testimport scala.collection.mutable.ListBuffer import scala.collection.mutable.ArrayBuffer
import org.apache.spark.SparkContext import org.apache.spark.SparkContext._ import org.apache.spark.SparkConf import org.apache.spark.rdd.RDD
import org.apache.spark.mllib.classification.NaiveBayes import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.tree.GradientBoostedTrees import org.apache.spark.mllib.tree.configuration.BoostingStrategy import org.apache.spark.mllib.tree.model.GradientBoostedTreesModel
/**
- By: lxw
- http://lxw1234.com
/
object CtrPredict {
//input (1fbe01fe,f3845767,28905ebd,ecad2386,7801e8d9)
//output ((0:1fbe01fe),(1:f3845767),(2:28905ebd),(3:ecad2386),(4:7801e8d9))
def parseCatFeatures(catfeatures: Array[String]) : List[(Int, String)] = {
var catfeatureList = new ListBuffer(Int, String)
for (i <- 0 until catfeatures.length){
catfeatureList += i -> catfeatures(i).toString
}
catfeatureList.toList
}
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("yarn-client")
val sc = new SparkContext(conf)
var ctrRDD = sc.textFile("/tmp/lxw1234/sample.txt",10);
println("Total records : " + ctrRDD.count)
//將整個數據集80%作為訓練數據,20%作為測試數據集
var train_test_rdd = ctrRDD.randomSplit(Array(0.8, 0.2), seed = 37L)
var train_raw_rdd = train_test_rdd(0)
var test_raw_rdd = train_test_rdd(1)
println("Train records : " + train_raw_rdd.count)
println("Test records : " + test_raw_rdd.count)
//cache train, test
train_raw_rdd.cache()
test_raw_rdd.cache()
var train_rdd = train_raw_rdd.map{ line =>
var tokens = line.split(",",-1)
//key為id和是否點擊廣告
var catkey = tokens(0) + "::" + tokens(1)
//第6列到第15列為分類特征,需要One-Hot-Encoding
var catfeatures = tokens.slice(5, 14)
//第16列到24列為數值特征,直接使用
var numericalfeatures = tokens.slice(15, tokens.size-1)
(catkey, catfeatures, numericalfeatures)
}
//拿一條出來看看
train_rdd.take(1)
//scala> train_rdd.take(1)
//res6: Array[(String, Array[String], Array[String])] = Array((1000009418151094273::0,Array(1fbe01fe,
// f3845767, 28905ebd, ecad2386, 7801e8d9, 07d7df22, a99f214a, ddd2926e, 44956a24),
// Array(2, 15706, 320, 50, 1722, 0, 35, -1)))
//將分類特征先做特征ID映射
var train_cat_rdd = train_rdd.map{
x => parseCatFeatures(x._2)
}
train_cat_rdd.take(1)
//scala> train_cat_rdd.take(1)
//res12: Array[List[(Int, String)]] = Array(List((0,1fbe01fe), (1,f3845767), (2,28905ebd),
// (3,ecad2386), (4,7801e8d9), (5,07d7df22), (6,a99f214a), (7,ddd2926e), (8,44956a24)))
//將train_cat_rdd中的(特征ID:特征)去重,并進行編號
var oheMap = train_cat_rdd.flatMap(x => x).distinct().zipWithIndex().collectAsMap()
//oheMap: scala.collection.Map[(Int, String),Long] = Map((7,608511e9) -> 31527, (7,b2d8fbed) -> 42207,
// (7,1d3e2fdb) -> 52791
println("Number of features")
println(oheMap.size)
//create OHE for train data
var ohe_train_rdd = train_rdd.map{ case (key, cateorical_features, numerical_features) =>
var cat_features_indexed = parseCatFeatures(cateorical_features)
var cat_feature_ohe = new ArrayBuffer[Double]
for (k <- cat_features_indexed) {
if(oheMap contains k){
cat_feature_ohe += (oheMap get (k)).get.toDouble
}else {
cat_feature_ohe += 0.0
}
}
var numerical_features_dbl = numerical_features.map{
x =>
var x1 = if (x.toInt < 0) "0" else x
x1.toDouble
}
var features = cat_feature_ohe.toArray ++ numerical_features_dbl
LabeledPoint(key.split("::")(1).toInt, Vectors.dense(features))
}
ohe_train_rdd.take(1)
//res15: Array[org.apache.spark.mllib.regression.LabeledPoint] =
// Array((0.0,[43127.0,50023.0,57445.0,13542.0,31092.0,14800.0,23414.0,54121.0,
// 17554.0,2.0,15706.0,320.0,50.0,1722.0,0.0,35.0,0.0]))
//訓練模型
//val boostingStrategy = BoostingStrategy.defaultParams("Regression")
val boostingStrategy = BoostingStrategy.defaultParams("Classification")
boostingStrategy.numIterations = 100
boostingStrategy.treeStrategy.numClasses = 2
boostingStrategy.treeStrategy.maxDepth = 10
boostingStrategy.treeStrategy.categoricalFeaturesInfo = MapInt, Int
val model = GradientBoostedTrees.train(ohe_train_rdd, boostingStrategy)
//保存模型
model.save(sc, "/tmp/myGradientBoostingClassificationModel")
//加載模型
val sameModel = GradientBoostedTreesModel.load(sc,"/tmp/myGradientBoostingClassificationModel")
//將測試數據集做OHE
var test_rdd = test_raw_rdd.map{ line =>
var tokens = line.split(",")
var catkey = tokens(0) + "::" + tokens(1)
var catfeatures = tokens.slice(5, 14)
var numericalfeatures = tokens.slice(15, tokens.size-1)
(catkey, catfeatures, numericalfeatures)
}
var ohe_test_rdd = test_rdd.map{ case (key, cateorical_features, numerical_features) =>
var cat_features_indexed = parseCatFeatures(cateorical_features)
var cat_feature_ohe = new ArrayBuffer[Double]
for (k <- cat_features_indexed) {
if(oheMap contains k){
cat_feature_ohe += (oheMap get (k)).get.toDouble
}else {
cat_feature_ohe += 0.0
}
}
var numerical_features_dbl = numerical_features.map{x =>
var x1 = if (x.toInt < 0) "0" else x
x1.toDouble}
var features = cat_feature_ohe.toArray ++ numerical_features_dbl
LabeledPoint(key.split("::")(1).toInt, Vectors.dense(features))
}
//驗證測試數據集
var b = ohe_test_rdd.map {
y => var s = model.predict(y.features)
(s,y.label,y.features)
}
b.take(10).foreach(println)
//預測準確率
var predictions = ohe_test_rdd.map(lp => sameModel.predict(lp.features))
predictions.take(10).foreach(println)
var predictionAndLabel = predictions.zip( ohe_testrdd.map(.label))
var accuracy = 1.0 predictionAndLabel.filter(x => x._1 == x._2 ).count/ohe_test_rdd.count
println("GBTR accuracy " + accuracy)
//GBTR accuracy 0.8227084119200302
}
}</pre>
其中,訓練數據集: Train records : 104558, 測試數據集:Test records : 26510
程序主要輸出:
scala> train_rdd.take(1) res23: Array[(String, Array[String], Array[String])] = Array((1000009418151094273::0, Array(1fbe01fe, f3845767, 28905ebd, ecad2386, 7801e8d9, 07d7df22, a99f214a, ddd2926e, 44956a24), Array(2, 15706, 320, 50, 1722, 0, 35, -1)))
scala> train_cat_rdd.take(1) res24: Array[List[(Int, String)]] = Array(List((0,1fbe01fe), (1,f3845767), (2,28905ebd), (3,ecad2386), (4,7801e8d9), (5,07d7df22), (6,a99f214a), (7,ddd2926e), (8,44956a24)))
scala> println("Number of features") Number of features
scala> println(oheMap.size) 57606
scala> ohe_train_rdd.take(1) res27: Array[org.apache.spark.mllib.regression.LabeledPoint] = Array( (0.0,[11602.0,22813.0,11497.0,16828.0,30657.0,23893.0,13182.0,31723.0,39722.0,2.0,15706.0,320.0,50.0,1722.0,0.0,35.0,0.0]))
scala> println("GBTR accuracy " + accuracy) GBTR accuracy 0.8227084119200302</pre>
本文轉載自xw的大數據田地。轉載請注明原文鏈接http://lxw1234.com/archives/2016/01/595.htm