ConcurrentHashMap原理分析

KendrickLon 8年前發布 | 7K 次閱讀 Java開發

來自: http://blog.csdn.net//chenleixing/article/details/46906333


??
集合是編程中最常用的數據結構。而談到并發,幾乎總是離不開集合這類高級數據結構的支持。比如兩個線程需要同時訪問一個中間臨界區(Queue),比如常會用緩存作為外部文件的副本(HashMap)。這篇文章主要分析jdk1.5的3種并發集合類型(concurrent,copyonright,queue)中的ConcurrentHashMap,讓我們從原理上細致的了解它們,能夠讓我們在深度項目開發中獲益非淺。
       在tiger之前,我們使用得最多的數據結構之一就是HashMap和Hashtable。大家都知道,HashMap中未進行同步考慮,而Hashtable則使用了synchronized,帶來的直接影響就是可選擇,我們可以在單線程時使用HashMap提高效率,而多線程時用Hashtable來保證安全。
       當我們享受著jdk帶來的便利時同樣承受它帶來的不幸惡果。通過分析Hashtable就知道,synchronized是針對整張Hash表的,即每次鎖住整張表讓線程獨占,安全的背后是巨大的浪費,慧眼獨具的Doug Lee立馬拿出了解決方案----ConcurrentHashMap。
       ConcurrentHashMap和Hashtable主要區別就是圍繞著鎖的粒度以及如何鎖。如圖
 
       左邊便是Hashtable的實現方式---鎖整個hash表;而右邊則是ConcurrentHashMap的實現方式---鎖桶(或段)。ConcurrentHashMap將hash表分為16個桶(默認值),諸如get,put,remove等常用操作只鎖當前需要用到的桶。試想,原來只能一個線程進入,現在卻能同時16個寫線程進入(寫線程才需要鎖定,而讀線程幾乎不受限制,之后會提到),并發性的提升是顯而易見的。
       更令人驚訝的是ConcurrentHashMap的讀取并發,因為在讀取的大多數時候都沒有用到鎖定,所以讀取操作幾乎是完全的并發操作,而寫操作鎖定的粒度又非常細,比起之前又更加快速(這一點在桶更多時表現得更明顯些)。只有在求size等操作時才需要鎖定整個表。而在迭代時,ConcurrentHashMap使用了不同于傳統集合的快速失敗迭代器(見之前的文章《JAVA API備忘---集合》)的另一種迭代方式,我們稱為弱一致迭代器。在這種迭代方式中,當iterator被創建后集合再發生改變就不再是拋出ConcurrentModificationEx ception,取而代之的是在改變時new新的數據從而不影響原有的數據,iterator完成后再將頭指針替換為新的數據,這樣iterator線程可以使用原來老的數據,而寫線程也可以并發的完成改變,更重要的,這保證了多個線程并發執行的連續性和擴展性,是性能提升的關鍵。
       接下來,讓我們看看ConcurrentHashMap中的幾個重要方法,心里知道了實現機制后,使用起來就更加有底氣。
       ConcurrentHashMap中主要實體類就是三個:ConcurrentHashMap(整個Hash表),Segment(桶),HashEntry(節點),對應上面的圖可以看出之間的關系。
       get方法(請注意,這里分析的方法都是針對桶的,因為ConcurrentHashMap的最大改進就是將粒度細化到了桶上),首先判斷了當前桶的數據個數是否為0,為0自然不可能get到什么,只有返回null,這樣做避免了不必要的搜索,也用最小的代價避免出錯。然后得到頭節點(方法將在下面涉及)之后就是根據hash和key逐個判斷是否是指定的值,如果是并且值非空就說明找到了,直接返回;程序非常簡單,但有一個令人困惑的地方,這句return readValueUnderLock(e)到底是用來干什么的呢?研究它的代碼,在鎖定之后返回一個值。但這里已經有一句V v = e.value得到了節點的值,這句return readValueUnderLock(e)是否多此一舉?事實上,這里完全是為了并發考慮的,這里當v為空時,可能是一個線程正在改變節點,而之前的get操作都未進行鎖定,根據bernstein條件,讀后寫或寫后讀都會引起數據的不一致,所以這里要對這個e重新上鎖再讀一遍,以保證得到的是正確值,這里不得不佩服Doug Lee思維的嚴密性。整個get操作只有很少的情況會鎖定,相對于之前的Hashtable,并發是不可避免的啊!
        V get(Object key, int hash) {
            if (count != 0) { // read-volatile
                HashEntry e = getFirst(hash);
                while (e != null) {
                    if (e.hash == hash && key.equals(e.key)) {
                        V v = e.value;
                        if (v != null)
                            return v;
                        return readValueUnderLock(e); // recheck
                    }
                    e = e.next;
                }
            }
            return null;
        }

 

        V readValueUnderLock(HashEntry e) {
            lock();
            try {
                return e.value;
            } finally {
                unlock();
            }
        }

 

    put操作一上來就鎖定了整個segment,這當然是為了并發的安全,修改數據是不能并發進行的,必須得有個判斷是否超限的語句以確保容量不足時能夠rehash,而比較難懂的是這句int index = hash & (tab.length - 1),原來segment里面才是真正的hashtable,即每個segment是一個傳統意義上的hashtable,如上圖,從兩者的結構就可以看出區別,這里就是找出需要的entry在table的哪一個位置,之后得到的entry就是這個鏈的第一個節點,如果e!=null,說明找到了,這是就要替換節點的值(onlyIfAbsent == false),否則,我們需要new一個entry,它的后繼是first,而讓tab[index]指向它,什么意思呢?實際上就是將這個新entry插入到鏈頭,剩下的就非常容易理解了。

        V put(K key, int hash, V value, boolean onlyIfAbsent) {
            lock();
            try {
                int c = count;
                if (c++ > threshold) // ensure capacity
                    rehash();
                HashEntry[] tab = table;
                int index = hash & (tab.length - 1);
                HashEntry first = (HashEntry) tab[index];
                HashEntry e = first;
                while (e != null && (e.hash != hash || !key.equals(e.key)))
                    e = e.next;

                V oldValue;
                if (e != null) {
                    oldValue = e.value;
                    if (!onlyIfAbsent)
                        e.value = value;
                }
                else {
                    oldValue = null;
                    ++modCount;
                    tab[index] = new HashEntry(key, hash, first, value);
                    count = c; // write-volatile
                }
                return oldValue;
            } finally {
                unlock();
            }
        }

 

    remove操作非常類似put,但要注意一點區別,中間那個for循環是做什么用的呢?(*號標記)從代碼來看,就是將定位之后的所有entry克隆并拼回前面去,但有必要嗎?每次刪除一個元素就要將那之前的元素克隆一遍?這點其實是由entry的不變性來決定的,仔細觀察entry定義,發現除了value,其他所有屬性都是用final來修飾的,這意味著在第一次設置了next域之后便不能再改變它,取而代之的是將它之前的節點全都克隆一次。至于entry為什么要設置為不變性,這跟不變性的訪問不需要同步從而節省時間有關,關于不變性的更多內容,請參閱之前的文章《線程高級---線程的一些編程技巧》

        V remove(Object key, int hash, Object value) {
            lock();
            try {
                int c = count - 1;
                HashEntry[] tab = table;
                int index = hash & (tab.length - 1);
                HashEntry first = (HashEntry)tab[index];
                HashEntry e = first;
                while (e != null && (e.hash != hash || !key.equals(e.key)))
                    e = e.next;

                V oldValue = null;
                if (e != null) {
                    V v = e.value;
                    if (value == null || value.equals(v)) {
                        oldValue = v;
                        // All entries following removed node can stay
                        // in list, but all preceding ones need to be
                        // cloned.
                        ++modCount;
                        HashEntry newFirst = e.next;
                       for (HashEntry p = first; p != e; p = p.next)
                           newFirst = new HashEntry(p.key, p.hash, 
                                                          newFirst, p.value);
                        tab[index] = newFirst;
                        count = c; // write-volatile
                    }
                }
                return oldValue;
            } finally {
                unlock();
            }
        }

 

    static final class HashEntry {
        final K key;
        final int hash;
        volatile V value;
        final HashEntry next;

        HashEntry(K key, int hash, HashEntry next, V value) {
            this.key = key;
            this.hash = hash;
            this.next = next;
            this.value = value;
        }
    }

 

    以上,分析了幾個最簡單的操作,限于篇幅,這里不再對rehash或iterator等實現進行討論,有興趣可以參考src。

    接下來實際上還有一個疑問,ConcurrentHashMap跟HashMap相比較性能到底如何。這在Brian Goetz的文章中已經有過評測http://www.ibm.com/developerworks/cn/java/j-jtp07233/


 本文由用戶 KendrickLon 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
 轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
 本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!