關于反射調用方法的一個log

xu5626629 14年前發布 | 19K 次閱讀 JVM Java開發

剛才在JavaEye問答頻道看到了 :

[Loaded sun.reflect.GeneratedMethodAccessor197 from __JVM_DefineClass__]
請問報這個是什么意思?



這是Sun實現的Java標準庫的一個細節。下面舉例稍微講解一下。
假如有這么一個類A:

public class A {
    public void foo(String name) {
        System.out.println("Hello, " + name);
    }
}


可以編寫另外一個類來反射調用A上的方法:

import java.lang.reflect.Method;

public class TestClassLoad {
    public static void main(String[] args) throws Exception {
        Class<?> clz = Class.forName("A");
        Object o = clz.newInstance();
        Method m = clz.getMethod("foo", String.class);
        for (int i = 0; i < 16; i++) {
            m.invoke(o, Integer.toString(i));
        }
    }
}


注意到TestClassLoad類上不會有對類A的符號依賴——也就是說在加載并初始化TestClassLoad類時不需要關心類A的存在與否,而是等到main()方法執行到調用Class.forName()時才試圖對類A做動態加載;這里用的是一個參數版的forName(),也就是使用當前方法所在類的ClassLoader來加載,并且初始化新加載的類。……好吧這個細節跟主題沒啥關系。

回到主題。這次我的測試環境是Sun的JDK 1.6.0 update 13 build 03。編譯上述代碼,并在執行TestClassLoad時加入-XX:+TraceClassLoading參數(或者-verbose:class或者直接-verbose都行),如下:

java -XX:+TraceClassLoading TestClassLoad


可以看到輸出了一大堆log,把其中相關的部分截取出來如下:(完整的log可以從附件下載)

[Loaded TestClassLoad from file:/D:/temp_code/test_java_classload/]
[Loaded A from file:/D:/temp_code/test_java_classload/]
[Loaded sun.reflect.NativeMethodAccessorImpl from shared objects file]
[Loaded sun.reflect.DelegatingMethodAccessorImpl from shared objects file]
Hello, 0
Hello, 1
Hello, 2
Hello, 3
Hello, 4
Hello, 5
Hello, 6
Hello, 7
Hello, 8
Hello, 9
Hello, 10
Hello, 11
Hello, 12
Hello, 13
Hello, 14
[Loaded sun.reflect.ClassFileConstants from shared objects file]
[Loaded sun.reflect.AccessorGenerator from shared objects file]
[Loaded sun.reflect.MethodAccessorGenerator from shared objects file]
[Loaded sun.reflect.ByteVectorFactory from shared objects file]
[Loaded sun.reflect.ByteVector from shared objects file]
[Loaded sun.reflect.ByteVectorImpl from shared objects file]
[Loaded sun.reflect.ClassFileAssembler from shared objects file]
[Loaded sun.reflect.UTF8 from shared objects file]
[Loaded java.lang.Void from shared objects file]
[Loaded sun.reflect.Label from shared objects file]
[Loaded sun.reflect.Label$PatchInfo from shared objects file]
[Loaded java.util.AbstractList$Itr from shared objects file]
[Loaded sun.reflect.MethodAccessorGenerator$1 from shared objects file]
[Loaded sun.reflect.ClassDefiner from shared objects file]
[Loaded sun.reflect.ClassDefiner$1 from shared objects file]
[Loaded sun.reflect.GeneratedMethodAccessor1 from __JVM_DefineClass__]
Hello, 15


可以看到前15次反射調用A.foo()方法并沒有什么稀奇的地方,但在第16次反射調用時似乎有什么東西被觸發了,導致JVM新加載了一堆類,其中就包括[Loaded sun.reflect.GeneratedMethodAccessor1 from __JVM_DefineClass__]這么一行。這是哪里來的呢?

先來看看JDK里Method.invoke()是怎么實現的。
java.lang.reflect.Method:

public final
    class Method extends AccessibleObject implements GenericDeclaration, 
                             Member {
    // ...

    private volatile MethodAccessor methodAccessor;
    // For sharing of MethodAccessors. This branching structure is
    // currently only two levels deep (i.e., one root Method and
    // potentially many Method objects pointing to it.)
    private Method              root;

    // ...

    public Object invoke(Object obj, Object... args)
            throws IllegalAccessException, IllegalArgumentException,
            InvocationTargetException
    {
        if (!override) {
            if (!Reflection.quickCheckMemberAccess(clazz, modifiers)) {
                Class caller = Reflection.getCallerClass(1);
                Class targetClass = ((obj == null || !Modifier.isProtected(modifiers))
                                     ? clazz
                                     : obj.getClass());
                boolean cached;
                synchronized (this) {
                    cached = (securityCheckCache == caller)
                        && (securityCheckTargetClassCache == targetClass);
                }
                if (!cached) {
                    Reflection.ensureMemberAccess(caller, clazz, obj, modifiers);
                    synchronized (this) {
                    securityCheckCache = caller;
                    securityCheckTargetClassCache = targetClass;
                    }
                }
            }
        }
        if (methodAccessor == null) acquireMethodAccessor();
        return methodAccessor.invoke(obj, args);
    }

    // NOTE that there is no synchronization used here. It is correct
    // (though not efficient) to generate more than one MethodAccessor
    // for a given Method. However, avoiding synchronization will
    // probably make the implementation more scalable.
    private void acquireMethodAccessor() {
        // First check to see if one has been created yet, and take it
        // if so
        MethodAccessor tmp = null;
        if (root != null) tmp = root.getMethodAccessor();
        if (tmp != null) {
            methodAccessor = tmp;
            return;
        }
        // Otherwise fabricate one and propagate it up to the root
        tmp = reflectionFactory.newMethodAccessor(this);
        setMethodAccessor(tmp);
    }

    // ...
}


可以看到Method.invoke()實際上并不是自己實現的反射調用邏輯,而是委托給sun.reflect.MethodAccessor來處理。
每個實際的Java方法只有一個對應的Method對象作為root,。這個root是不會暴露給用戶的,而是每次在通過反射獲取Method對象時新創建Method對象把root包裝起來再給用戶。在第一次調用一個實際Java方法對應得Method對象的invoke()方法之前,實現調用邏輯的MethodAccessor對象還沒創建;等第一次調用時才新創建MethodAccessor并更新給root,然后調用MethodAccessor.invoke()真正完成反射調用。

那么MethodAccessor是啥呢?
sun.reflect.MethodAccessor:

public interface MethodAccessor {
    /** Matches specification in {@link java.lang.reflect.Method} */
    public Object invoke(Object obj, Object[] args)
        throws IllegalArgumentException, InvocationTargetException;
}


可以看到它只是一個單方法接口,其invoke()方法與Method.invoke()的對應。

創建MethodAccessor實例的是ReflectionFactory。
sun.reflect.ReflectionFactory:

public class ReflectionFactory {

    private static boolean initted = false;

    // ...

    //
    // "Inflation" mechanism. Loading bytecodes to implement
    // Method.invoke() and Constructor.newInstance() currently costs
    // 3-4x more than an invocation via native code for the first
    // invocation (though subsequent invocations have been benchmarked
    // to be over 20x faster). Unfortunately this cost increases
    // startup time for certain applications that use reflection
    // intensively (but only once per class) to bootstrap themselves.
    // To avoid this penalty we reuse the existing JVM entry points
    // for the first few invocations of Methods and Constructors and
    // then switch to the bytecode-based implementations.
    //
    // Package-private to be accessible to NativeMethodAccessorImpl
    // and NativeConstructorAccessorImpl
    private static boolean noInflation        = false;
    private static int     inflationThreshold = 15;

    // ...

    /** We have to defer full initialization of this class until after
        the static initializer is run since java.lang.reflect.Method's
        static initializer (more properly, that for
        java.lang.reflect.AccessibleObject) causes this class's to be
        run, before the system properties are set up. */
    private static void checkInitted() {
        if (initted) return;
        AccessController.doPrivileged(new PrivilegedAction() {
                public Object run() {
                    // Tests to ensure the system properties table is fully
                    // initialized. This is needed because reflection code is
                    // called very early in the initialization process (before
                    // command-line arguments have been parsed and therefore
                    // these user-settable properties installed.) We assume that
                    // if System.out is non-null then the System class has been
                    // fully initialized and that the bulk of the startup code
                    // has been run.

                    if (System.out == null) {
                        // java.lang.System not yet fully initialized
                        return null;
                    }

                    String val = System.getProperty("sun.reflect.noInflation");
                    if (val != null && val.equals("true")) {
                        noInflation = true;
                    }

                    val = System.getProperty("sun.reflect.inflationThreshold");
                    if (val != null) {
                        try {
                            inflationThreshold = Integer.parseInt(val);
                        } catch (NumberFormatException e) {
                            throw (RuntimeException) 
                                new RuntimeException("Unable to parse property sun.reflect.inflationThreshold").
                                    initCause(e);
                        }
                    }

                    initted = true;
                    return null;
                }
            });
    }

    // ...

    public MethodAccessor newMethodAccessor(Method method) {
        checkInitted();

        if (noInflation) {
            return new MethodAccessorGenerator().
                generateMethod(method.getDeclaringClass(),
                               method.getName(),
                               method.getParameterTypes(),
                               method.getReturnType(),
                               method.getExceptionTypes(),
                               method.getModifiers());
        } else {
            NativeMethodAccessorImpl acc =
                new NativeMethodAccessorImpl(method);
            DelegatingMethodAccessorImpl res =
                new DelegatingMethodAccessorImpl(acc);
            acc.setParent(res);
            return res;
        }
    }
}


這里就可以看到有趣的地方了。如注釋所述,實際的MethodAccessor實現有兩個版本,一個是Java實現的,另一個是native code實現的。Java實現的版本在初始化時需要較多時間,但長久來說性能較好;native版本正好相反,啟動時相對較快,但運行時間長了之后速度就比不過Java版了。這是HotSpot的優化方式帶來的性能特性,同時也是許多虛擬機的共同點:跨越native邊界會對優化有阻礙作用,它就像個黑箱一樣讓虛擬機難以分析也將其內聯,于是運行時間長了之后反而是托管版本的代碼更快些。
為了權衡兩個版本的性能,Sun的JDK使用了“inflation”的技巧:讓Java方法在被反射調用時,開頭若干次使用native版,等反射調用次數超過閾值時則生成一個專用的MethodAccessor實現類,生成其中的invoke()方法的字節碼,以后對該Java方法的反射調用就會使用Java版。
Sun的JDK是從1.4系開始采用這種優化的,主要作者是 Ken Russell

上面看到了ReflectionFactory.newMethodAccessor()生產MethodAccessor的邏輯,在“開頭若干次”時用到的DelegatingMethodAccessorImpl代碼如下:
sun.reflect.DelegatingMethodAccessorImpl:

/** Delegates its invocation to another MethodAccessorImpl and can
    change its delegate at run time. */

class DelegatingMethodAccessorImpl extends MethodAccessorImpl {
    private MethodAccessorImpl delegate;

    DelegatingMethodAccessorImpl(MethodAccessorImpl delegate) {
        setDelegate(delegate);
    }    

    public Object invoke(Object obj, Object[] args)
        throws IllegalArgumentException, InvocationTargetException
    {
        return delegate.invoke(obj, args);
    }

    void setDelegate(MethodAccessorImpl delegate) {
        this.delegate = delegate;
    }
}


這是一個間接層,方便在native與Java版的MethodAccessor之間實現切換。

然后下面就是native版MethodAccessor的Java一側的聲明:
sun.reflect.NativeMethodAccessorImpl:

/** Used only for the first few invocations of a Method; afterward,
    switches to bytecode-based implementation */

class NativeMethodAccessorImpl extends MethodAccessorImpl {
    private Method method;
    private DelegatingMethodAccessorImpl parent;
    private int numInvocations;

    NativeMethodAccessorImpl(Method method) {
        this.method = method;
    }    

    public Object invoke(Object obj, Object[] args)
        throws IllegalArgumentException, InvocationTargetException
    {
        if (++numInvocations > ReflectionFactory.inflationThreshold()) {
            MethodAccessorImpl acc = (MethodAccessorImpl)
                new MethodAccessorGenerator().
                    generateMethod(method.getDeclaringClass(),
                                   method.getName(),
                                   method.getParameterTypes(),
                                   method.getReturnType(),
                                   method.getExceptionTypes(),
                                   method.getModifiers());
            parent.setDelegate(acc);
        }

        return invoke0(method, obj, args);
    }

    void setParent(DelegatingMethodAccessorImpl parent) {
        this.parent = parent;
    }

    private static native Object invoke0(Method m, Object obj, Object[] args);
}


每次NativeMethodAccessorImpl.invoke()方法被調用時,都會增加一個調用次數計數器,看超過閾值沒有;一旦超過,則調用MethodAccessorGenerator.generateMethod()來生成Java版的MethodAccessor的實現類,并且改變DelegatingMethodAccessorImpl所引用的MethodAccessor為Java版。后續經由DelegatingMethodAccessorImpl.invoke()調用到的就是Java版的實現了。

注意到關鍵的invoke0()方法是個native方法。它在HotSpot VM里是由JVM_InvokeMethod()函數所支持的:

JNIEXPORT jobject JNICALL Java_sun_reflect_NativeMethodAccessorImpl_invoke0
(JNIEnv *env, jclass unused, jobject m, jobject obj, jobjectArray args)
{
    return JVM_InvokeMethod(env, m, obj, args);
}

 

JVM_ENTRY(jobject, JVM_InvokeMethod(JNIEnv *env, jobject method, jobject obj, jobjectArray args0))
  JVMWrapper("JVM_InvokeMethod");
  Handle method_handle;
  if (thread->stack_available((address) &method_handle) >= JVMInvokeMethodSlack) {
    method_handle = Handle(THREAD, JNIHandles::resolve(method));
    Handle receiver(THREAD, JNIHandles::resolve(obj));
    objArrayHandle args(THREAD, objArrayOop(JNIHandles::resolve(args0)));
    oop result = Reflection::invoke_method(method_handle(), receiver, args, CHECK_NULL);
    jobject res = JNIHandles::make_local(env, result);
    if (JvmtiExport::should_post_vm_object_alloc()) {
      oop ret_type = java_lang_reflect_Method::return_type(method_handle());
      assert(ret_type != NULL, "sanity check: ret_type oop must not be NULL!");
      if (java_lang_Class::is_primitive(ret_type)) {
        // Only for primitive type vm allocates memory for java object.
        // See box() method.
        JvmtiExport::post_vm_object_alloc(JavaThread::current(), result);
      }
    }
    return res;
  } else {
    THROW_0(vmSymbols::java_lang_StackOverflowError());
  }
JVM_END


其中的關鍵又是Reflection::invoke_method():

// This would be nicer if, say, java.lang.reflect.Method was a subclass
// of java.lang.reflect.Constructor

oop Reflection::invoke_method(oop method_mirror, Handle receiver, objArrayHandle args, TRAPS) {
  oop mirror             = java_lang_reflect_Method::clazz(method_mirror);
  int slot               = java_lang_reflect_Method::slot(method_mirror);
  bool override          = java_lang_reflect_Method::override(method_mirror) != 0;
  objArrayHandle ptypes(THREAD, objArrayOop(java_lang_reflect_Method::parameter_types(method_mirror)));

  oop return_type_mirror = java_lang_reflect_Method::return_type(method_mirror);
  BasicType rtype;
  if (java_lang_Class::is_primitive(return_type_mirror)) {
    rtype = basic_type_mirror_to_basic_type(return_type_mirror, CHECK_NULL);
  } else {
    rtype = T_OBJECT;
  }

  instanceKlassHandle klass(THREAD, java_lang_Class::as_klassOop(mirror));
  methodOop m = klass->method_with_idnum(slot);
  if (m == NULL) {
    THROW_MSG_0(vmSymbols::java_lang_InternalError(), "invoke");
  }
  methodHandle method(THREAD, m);

  return invoke(klass, method, receiver, override, ptypes, rtype, args, true, THREAD);
}


再下去就深入到HotSpot VM的內部了,本文就在這里打住吧。有同學有興趣深究的話以后可以再寫一篇討論native版的實現。

回到Java的一側。MethodAccessorGenerator長啥樣呢?由于代碼太長,這里就不完整貼了,有興趣的可以到OpenJDK 6的Mercurial倉庫看: OpenJDK 6 build 17的MethodAccessorGenerator 。它的基本工作就是在內存里生成新的專用Java類,并將其加載。就貼這么一個方法:

private static synchronized String generateName(boolean isConstructor,
                                                boolean forSerialization)
{
    if (isConstructor) {
        if (forSerialization) {
            int num = ++serializationConstructorSymnum;
            return "sun/reflect/GeneratedSerializationConstructorAccessor" + num;
        } else {
            int num = ++constructorSymnum;
            return "sun/reflect/GeneratedConstructorAccessor" + num;
        }
    } else {
        int num = ++methodSymnum;
        return "sun/reflect/GeneratedMethodAccessor" + num;
    }
}


去閱讀源碼的話,可以看到MethodAccessorGenerator是如何一點點把Java版的MethodAccessor實現類生產出來的。也可以看到GeneratedMethodAccessor+數字這種名字是從哪里來的了,就在上面的generateName()方法里。
對本文開頭的例子的A.foo(),生成的Java版MethodAccessor大致如下:

package sun.reflect;

public class GeneratedMethodAccessor1 extends MethodAccessorImpl {    
    public GeneratedMethodAccessor1() {
        super();
    }

    public Object invoke(Object obj, Object[] args)   
        throws IllegalArgumentException, InvocationTargetException {
        // prepare the target and parameters
        if (obj == null) throw new NullPointerException();
        try {
            A target = (A) obj;
            if (args.length != 1) throw new IllegalArgumentException();
            String arg0 = (String) args[0];
        } catch (ClassCastException e) {
            throw new IllegalArgumentException(e.toString());
        } catch (NullPointerException e) {
            throw new IllegalArgumentException(e.toString());
        }
        // make the invocation
        try {
            target.foo(arg0);
        } catch (Throwable t) {
            throw new InvocationTargetException(t);
        }
    }
}


就反射調用而言,這個invoke()方法非常干凈(然而就“正常調用”而言這額外開銷還是明顯的)。注意到參數數組被拆開了,把每個參數都恢復到原本沒有被Object[]包裝前的樣子,然后對目標方法做正常的invokevirtual調用。由于在生成代碼時已經循環遍歷過參數類型的數組,生成出來的代碼里就不再包含循環了。
當該反射調用成為熱點時,它甚至可以被內聯到靠近Method.invoke()的一側,大大降低了反射調用的開銷。而native版的反射調用則無法被有效內聯,因而調用開銷無法隨程序的運行而降低。
雖說Sun的JDK這種實現方式使得反射調用方法成本比以前降低了很多,但Method.invoke()本身要用數組包裝參數;而且每次調用都必須檢查方法的可見性(在Method.invoke()里),也必須檢查每個實際參數與形式參數的類型匹配性(在NativeMethodAccessorImpl.invoke0()里或者生成的Java版MethodAccessor.invoke()里);而且Method.invoke()就像是個獨木橋一樣,各處的反射調用都要擠過去,在調用點上收集到的類型信息就會很亂,影響內聯程序的判斷,使得Method.invoke()自身難以被內聯到調用方。
相比之下 JDK 7里新的MethodHandle 則更有潛力,在其功能完全實現后能達到比普通反射調用方法更高的性能。在使用MethodHandle來做反射調用時,MethodHandle.invoke()的形式參數與返回值類型都是準確的,所以只需要在鏈接方法的時候才需要檢查類型的匹配性,而不必在每次調用時都檢查。而且MethodHandle是不可變值,在創建后其內部狀態就不會再改變了;JVM可以利用這個知識而放心的對它做激進優化,例如將實際的調用目標內聯到做反射調用的一側。

到本來Java的安全機制使得不同類之間不是任意信息都可見,但Sun的JDK里開了個口,有一個標記類專門用于開后門:

package sun.reflect;

/** <P> MagicAccessorImpl (named for parity with FieldAccessorImpl and
    others, not because it actually implements an interface) is a
    marker class in the hierarchy. All subclasses of this class are
    "magically" granted access by the VM to otherwise inaccessible
    fields and methods of other classes. It is used to hold the code
    for dynamically-generated FieldAccessorImpl and MethodAccessorImpl
    subclasses. (Use of the word "unsafe" was avoided in this class's
    name to avoid confusion with {@link sun.misc.Unsafe}.) </P>

    <P> The bug fix for 4486457 also necessitated disabling
    verification for this class and all subclasses, as opposed to just
    SerializationConstructorAccessorImpl and subclasses, to avoid
    having to indicate to the VM which of these dynamically-generated
    stub classes were known to be able to pass the verifier. </P>

    <P> Do not change the name of this class without also changing the
    VM's code. </P> */

class MagicAccessorImpl {
}



那個"__JVM_DefineClass__"的來源是這里:
src/share/vm/prims/jvm.cpp

// common code for JVM_DefineClass() and JVM_DefineClassWithSource()
// and JVM_DefineClassWithSourceCond()
static jclass jvm_define_class_common(JNIEnv *env, const char *name,
                                      jobject loader, const jbyte *buf,
                                      jsize len, jobject pd, const char *source,
                                      jboolean verify, TRAPS) {
  if (source == NULL)  source = "__JVM_DefineClass__";



OK,本文就記到這里吧。希望對問答頻道提問那位同學有幫助。

Have fun ^_^

============================================================================
P.S. log里的"shared objects file"其實也是個有趣的話題。有機會的話也可以寫寫。

 

來自:http://rednaxelafx.iteye.com/blog/548536

 

 本文由用戶 xu5626629 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
 轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
 本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!