Java泛型:泛型類、泛型接口和泛型方法

wmma3991 8年前發布 | 8K 次閱讀 泛型 Java Java開發

有許多原因促成了泛型的出現,而最引人注意的一個原因,就是為了創建容器類。

泛型類

容器類應該算得上最具重用性的類庫之一。先來看一個沒有泛型的情況下的容器類如何定義:

public class Container {
    private String key;
    private String value;

    public Container(String k, String v) {
        key = k;
        value = v;
    }

    public String getKey() {
        return key;
    }

    public void setKey(String key) {
        this.key = key;
    }

    public String getValue() {
        return value;
    }

    public void setValue(String value) {
        this.value = value;
    }
}

Container 類保存了一對 key-value 鍵值對,但是類型是定死的,也就說如果我想要創建一個鍵值對是 String-Integer 類型的,當前這個 Container 是做不到的,必須再自定義。那么這明顯重用性就非常低。

當然,我可以用 Object 來代替 String ,并且在Java SE5之前,我們也只能這么做,由于 Object 是所有類型的基類,所以可以直接轉型。但是這樣靈活性還是不夠,因為還是指定類型了,只不過這次指定的類型層級更高而已,有沒有可能不指定類型?有沒有可能在運行時才知道具體的類型是什么?

所以,就出現了泛型。

public class Container<K, V> {
    private K key;
    private V value;

    public Container(K k, V v) {
        key = k;
        value = v;
    }

    public K getKey() {
        return key;
    }

    public void setKey(K key) {
        this.key = key;
    }

    public V getValue() {
        return value;
    }

    public void setValue(V value) {
        this.value = value;
    }
}

在編譯期,是無法知道 K 和 V 具體是什么類型,只有在運行時才會真正根據類型來構造和分配內存。可以看一下現在 Container 類對于不同類型的支持情況:

public class Main {

    public static void main(String[] args) {
        Container<String, String> c1 = new Container<String, String>("name", "findingsea");
        Container<String, Integer> c2 = new Container<String, Integer>("age", 24);
        Container<Double, Double> c3 = new Container<Double, Double>(1.1, 2.2);
        System.out.println(c1.getKey() + " : " + c1.getValue());
        System.out.println(c2.getKey() + " : " + c2.getValue());
        System.out.println(c3.getKey() + " : " + c3.getValue());
    }
}

輸出:

name : findingsea
age : 24
1.1 : 2.2

泛型接口

在泛型接口中,生成器是一個很好的理解,看如下的生成器接口定義:

public interface Generator<T> {
    public T next();
}

然后定義一個生成器類來實現這個接口:

public class FruitGenerator implements Generator<String> {

    private String[] fruits = new String[]{"Apple", "Banana", "Pear"};

    @Override
    public String next() {
        Random rand = new Random();
        return fruits[rand.nextInt(3)];
    }
}

調用:

public class Main {

    public static void main(String[] args) {
        FruitGenerator generator = new FruitGenerator();
        System.out.println(generator.next());
        System.out.println(generator.next());
        System.out.println(generator.next());
        System.out.println(generator.next());
    }
}

輸出:

Banana
Banana
Pear
Banana

泛型方法

一個基本的原則是:無論何時,只要你能做到,你就應該盡量使用泛型方法。也就是說,如果使用泛型方法可以取代將整個類泛化,那么應該有限采用泛型方法。下面來看一個簡單的泛型方法的定義:

public class Main {

    public static <T> void out(T t) {
        System.out.println(t);
    }

    public static void main(String[] args) {
        out("findingsea");
        out(123);
        out(11.11);
        out(true);
    }
}

可以看到方法的參數徹底泛化了,這個過程涉及到編譯器的類型推導和自動打包,也就說原來需要我們自己對類型進行的判斷和處理,現在編譯器幫我們做了。這樣在定義方法的時候不必考慮以后到底需要處理哪些類型的參數,大大增加了編程的靈活性。

再看一個泛型方法和可變參數的例子:

public class Main {

    public static <T> void out(T... args) {
        for (T t : args) {
            System.out.println(t);
        }
    }

    public static void main(String[] args) {
        out("findingsea", 123, 11.11, true);
    }
}

輸出和前一段代碼相同,可以看到泛型可以和可變參數非常完美的結合。

 

來自:http://www.androidchina.net/5731.html

 

 本文由用戶 wmma3991 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
 轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
 本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!