利用Map/Reduce的機器學習算法庫 Apache Mahout 0.6 發布

fmms 12年前發布 | 13K 次閱讀 Apache

Mahout是一個利用Map/Reduce的機器學習算法庫,其思想源于斯坦福大學幾個學者在2006年的nips會議上發表的一篇文章“Map- Reduct for Machine Learning on Multicore"

Apache Mahout 0.6 發布了,建議所有開發者升級,該版本主要改進包括:

  • Improved Decision Tree performance and added support for regression problems
  • New LDA implementation using Collapsed Variational Bayes 0th Derivative Approximation
  • Reduced runtime of LanczosSolver tests
  • K-Trusses, Top-Down and Bottom-Up clustering, Random Walk with Restarts implementation
  • Reduced runtime of dot product between vectors
  • Added MongoDB and Cassandra DataModel support
  • Increased efficiency of parallel ALS matrix factorization
  • SSVD enhancements
  • Performance improvements in RowSimilarityJob, TransposeJob
  • Added numerous clustering display examples
  • Many bug fixes, refactorings, and other small improvements

完整列表請看:release notes.

下載地址:Apache mirrors.

 本文由用戶 fmms 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
 轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
 本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!