OpenCV圖像匹配算法之sift

cwf8 9年前發布 | 15K 次閱讀 C/C++ OpenCV

    //utils.h

#ifndef _UTILS_H  
#define _UTILS_H  

#include <opencv2/opencv.hpp>  
#include <opencv2/features2d/features2d.hpp>  
#include <opencv2/core/core.hpp>  
#include <opencv2/imgproc/imgproc.hpp>  
#include <opencv2\nonfree\nonfree.hpp>  
using namespace cv;  

// ORB settings  
const int ORB_MAX_KPTS = 1500;  
const float ORB_SCALE_FACTOR = 1.5;  
const int ORB_PYRAMID_LEVELS = 3;  
const float ORB_EDGE_THRESHOLD = 31.0;  
const int ORB_FIRST_PYRAMID_LEVEL = 0;  
const int ORB_WTA_K = 2;  
const int ORB_PATCH_SIZE = 31;  

// BRISK settings  
const float BRISK_HTHRES = 10.0;  
const int BRISK_NOCTAVES = 6;  


const float DRATIO = 0.8f;                          // NNDR Matching value  
const float MIN_H_ERROR = 2.50f;            // Maximum error in pixels to accept an inlier  

void matches2points_nndr(const std::vector<cv::KeyPoint>& train,  
                         const std::vector<cv::KeyPoint>& query,  
                         const std::vector<std::vector<cv::DMatch> >& matches,  
                         std::vector<cv::Point2f>& pmatches, float nndr);  
void compute_inliers_ransac(const std::vector<cv::Point2f>& matches,  
                            std::vector<cv::Point2f>& inliers,  
                            float error, bool use_fund);  
void draw_inliers(const cv::Mat& img1, const cv::Mat& img2, cv::Mat& img_com,  
                  const std::vector<cv::Point2f>& ptpairs, int color);  

typedef struct info  
{  
    double t;  
    int n1;  
    int n2;  
    int m;  
    int rm;  
}INFO;  

void sift(char* path1, char* path2, INFO& info, bool show);  
void surf(char* path1, char* path2, INFO& info, bool show);  
void orb(char* path1, char* path2, INFO& info, bool show);  
void brisk(char* path1, char* path2, INFO& info, bool show);  
void freak(char* path1, char* path2, INFO& info, bool show);  
void showInfo(INFO info);  

#endif  </pre> 


    //utils.cpp

#include "stdafx.h"  
#include "utils.h"  
#include <iostream>  
using namespace std;  

/** 
 * @brief This function converts matches to points using nearest neighbor distance 
 * ratio matching strategy 
 * @param train Vector of keypoints from the first image 
 * @param query Vector of keypoints from the second image 
 * @param matches Vector of nearest neighbors for each keypoint 
 * @param pmatches Vector of putative matches 
 * @param nndr Nearest neighbor distance ratio value 
 */  
void matches2points_nndr(const std::vector<cv::KeyPoint>& train,  
                         const std::vector<cv::KeyPoint>& query,  
                         const std::vector<std::vector<cv::DMatch> >& matches,  
                         std::vector<cv::Point2f>& pmatches, float nndr) {  

  float dist1 = 0.0, dist2 = 0.0;  
  for (size_t i = 0; i < matches.size(); i++) {  
    DMatch dmatch = matches[i][0];  
    dist1 = matches[i][0].distance;  
    dist2 = matches[i][1].distance;  

    if (dist1 < nndr*dist2) {  
      pmatches.push_back(train[dmatch.queryIdx].pt);  
      pmatches.push_back(query[dmatch.trainIdx].pt);  
    }  
  }  
}  

/** 
 * @brief This function computes the set of inliers estimating the fundamental matrix 
 * or a planar homography in a RANSAC procedure 
 * @param matches Vector of putative matches 
 * @param inliers Vector of inliers 
 * @param error The minimum pixelic error to accept an inlier 
 * @param use_fund Set to true if you want to compute a fundamental matrix 
 */  
void compute_inliers_ransac(const std::vector<cv::Point2f>& matches,  
                            std::vector<cv::Point2f>& inliers,  
                            float error, bool use_fund) {  

  vector<Point2f> points1, points2;  
  Mat H = Mat::zeros(3,3,CV_32F);  
  int npoints = matches.size()/2;  
  Mat status = Mat::zeros(npoints,1,CV_8UC1);  

  for (size_t i = 0; i < matches.size(); i+=2) {  
    points1.push_back(matches[i]);  
    points2.push_back(matches[i+1]);  
  }  

  if (use_fund == true){  
    H = findFundamentalMat(points1,points2,CV_FM_RANSAC,error,0.99,status);  
  }  
  else {  
    H = findHomography(points1,points2,CV_RANSAC,error,status);  
  }  

  for (int i = 0; i < npoints; i++) {  
    if (status.at<unsigned char>(i) == 1) {  
      inliers.push_back(points1[i]);  
      inliers.push_back(points2[i]);  
    }  
  }  
}  

//*******************************************************************************  
//*******************************************************************************  

/**  
 * @brief This function draws the set of the inliers between the two images  
 * @param img1 First image  
 * @param img2 Second image  
 * @param img_com Image with the inliers  
 * @param ptpairs Vector of point pairs with the set of inliers  
 * @param color The color for each method  
 */  
void draw_inliers(const cv::Mat& img1, const cv::Mat& img2, cv::Mat& img_com,  
                  const std::vector<cv::Point2f>& ptpairs, int color) {  

  int x1 = 0, y1 = 0, x2 = 0, y2 = 0;  
  float rows1 = 0.0, cols1 = 0.0;  
  float rows2 = 0.0, cols2 = 0.0;  
  float ufactor = 0.0, vfactor = 0.0;  

  rows1 = img1.rows;  
  cols1 = img1.cols;  
  rows2 = img2.rows;  
  cols2 = img2.cols;  
  ufactor = (float)(cols1)/(float)(cols2);  
  vfactor = (float)(rows1)/(float)(rows2);  

  // This is in case the input images don't have the same resolution  
  Mat img_aux = Mat(Size(img1.cols,img1.rows),CV_8UC3);  
  resize(img2,img_aux,Size(img1.cols,img1.rows),0,0,CV_INTER_LINEAR);  

  for (int i = 0; i < img_com.rows; i++) {  
    for (int j = 0; j < img_com.cols; j++) {  
      if (j < img1.cols) {  
        *(img_com.ptr<unsigned char>(i)+3*j) = *(img1.ptr<unsigned char>(i)+3*j);  
        *(img_com.ptr<unsigned char>(i)+3*j+1) = *(img1.ptr<unsigned char>(i)+3*j+1);  
        *(img_com.ptr<unsigned char>(i)+3*j+2) = *(img1.ptr<unsigned char>(i)+3*j+2);  
      }  
      else {  
        *(img_com.ptr<unsigned char>(i)+3*j) = *(img_aux.ptr<unsigned char>(i)+3*(j-img_aux.cols));  
        *(img_com.ptr<unsigned char>(i)+3*j+1) = *(img_aux.ptr<unsigned char>(i)+3*(j-img_aux.cols)+1);  
        *(img_com.ptr<unsigned char>(i)+3*j+2) = *(img_aux.ptr<unsigned char>(i)+3*(j-img_aux.cols)+2);  
      }  
    }  
  }  

  for (size_t i = 0; i < ptpairs.size(); i+= 2) {  
    x1 = (int)(ptpairs[i].x+.5);  
    y1 = (int)(ptpairs[i].y+.5);  
    x2 = (int)(ptpairs[i+1].x*ufactor+img1.cols+.5);  
    y2 = (int)(ptpairs[i+1].y*vfactor+.5);  

    if (color == 0) {  
      line(img_com,Point(x1,y1),Point(x2,y2),CV_RGB(255,255,0),1);  
    }  
    else if (color == 1) {  
      line(img_com,Point(x1,y1),Point(x2,y2),CV_RGB(255,0,0),1);  
    }  
    else if (color == 2) {  
      line(img_com,Point(x1,y1),Point(x2,y2),CV_RGB(0,0,255),1);  
    }  
  }  
}  


void showInfo(INFO info)  
{  
    printf("%-40s%d\n","The keypoints number of src image is :", info.n1);  
    printf("%-40s%d\n","The keypoints number of dst image is : ", info.n2);  
    printf("%-40s%d\n","The matching number is : ", info.m);  
    printf("%-40s%d\n","The right result number is : ", info.rm);  
    printf("%-40s%.2fs\n","The total time is : ", info.t);  
    return ;  
}  </pre> 


    //sift.cpp

#include "stdafx.h"  
#include <cv.hpp>  
#include <highgui.h>  
#include "utils.h"  
#include <iostream>  
using namespace std;  

void sift(char* path1, char* path2, INFO& info, bool show)  
{  
    double t1,t2;  
    t1=cvGetTickCount();  

    initModule_nonfree();  

    Mat img1, img2;   
    img1=imread(path1,0);  
    img2=imread(path2,0);  
    if(img1.data==NULL)  
    {  
        cout<<"The image can not been loaded: "<<path1<<endl;  
        system("pause");  
        exit(-1);  
    }  
    if(img2.data==NULL)  
    {  
        cout<<"The image can not been loaded: "<<path2<<endl;  
        system("pause");  
        exit(-1);  
    }     

    Ptr<FeatureDetector> sift_detector = FeatureDetector::create( "SIFT" );  
    Ptr<DescriptorExtractor> sift_descriptor = DescriptorExtractor::create( "SIFT" );    
    vector<KeyPoint> kpts1_sift, kpts2_sift;  
    Mat desc1_sift, desc2_sift;  
    Ptr<DescriptorMatcher> matcher_l2 = DescriptorMatcher::create("BruteForce");      //歐氏距離匹配  
    vector<vector<DMatch> > dmatches_sift;  
    vector<Point2f> matches_sift, inliers_sift;  

    sift_detector->detect(img1,kpts1_sift);  
    sift_detector->detect(img2,kpts2_sift);  
    info.n1=kpts1_sift.size();  
    info.n2=kpts2_sift.size();  
    sift_descriptor->compute(img1,kpts1_sift,desc1_sift);  
    sift_descriptor->compute(img2,kpts2_sift,desc2_sift);  
    matcher_l2->knnMatch(desc1_sift,desc2_sift,dmatches_sift,2);                                     //匹配  
    matches2points_nndr(kpts1_sift,kpts2_sift,dmatches_sift,matches_sift,DRATIO);  
    info.m=matches_sift.size()/2;  
    compute_inliers_ransac(matches_sift,inliers_sift,MIN_H_ERROR,false);  
    info.rm=inliers_sift.size()/2;  

    t2=cvGetTickCount();  
    info.t=(t2-t1)/1000000.0/cvGetTickFrequency();  

    Mat img1_rgb_sift = imread(path1,1);  
    Mat img2_rgb_sift = imread(path2,1);  
    Mat img_com_sift = Mat(Size(img1.cols*2,img1.rows),CV_8UC3);  

    if(show == true)  
    {  
        draw_inliers(img1_rgb_sift,img2_rgb_sift,img_com_sift,inliers_sift,2);  
        imshow("sift",img_com_sift);  
        waitKey(0);  
    }  

    return;  
}  </pre> 


使用

    INFO sift_info;  
    sift(path1,path2,sift_info,true);  
    showInfo(sift_info);  

 本文由用戶 cwf8 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
 轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
 本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!