一個高效的分布式計算系統:Spark

jopen 11年前發布 | 54K 次閱讀 Spark 分布式/云計算/大數據

什么是Spark

  • Spark是UC Berkeley AMP lab所開源的類Hadoop MapReduce的通用的并行計算框架,Spark基于map reduce算法實現的分布式計算,擁有Hadoop MapReduce所具有的優點;但不同于MapReduce的是Job中間輸出和結果可以保存在內存中,從而不再需要讀寫HDFS,因此Spark能更好地適用于數據挖掘與機器學習等需要迭代的map reduce的算法。其架構如下圖所示:spark-framwork
  • </ul>

    Spark與Hadoop的對比

    • Spark的中間數據放到內存中,對于迭代運算效率更高。

      • Spark更適合于迭代運算比較多的ML和DM運算。因為在Spark里面,有RDD的抽象概念。
      • </ul> </li>

      • Spark比Hadoop更通用。

        • Spark提供的數據集操作類型有很多種,不像Hadoop只提供了Map和Reduce兩種操作。比如map, filter, flatMap, sample, groupByKey, reduceByKey, union, join, cogroup, mapValues, sort,partionBy等多種操作類型,Spark把這些操作稱為Transformations。同時還提供Count, collect, reduce, lookup, save等多種actions操作。
        • 這些多種多樣的數據集操作類型,給給開發上層應用的用戶提供了方便。各個處理節點之間的通信模型不再像Hadoop那樣就是唯一的Data Shuffle一種模式。用戶可以命名,物化,控制中間結果的存儲、分區等。可以說編程模型比Hadoop更靈活。
        • 不過由于RDD的特性,Spark不適用那種異步細粒度更新狀態的應用,例如web服務的存儲或者是增量的web爬蟲和索引。就是對于那種增量修改的應用模型不適合。
        • </ul> </li>

        • 容錯性。

          • 在分布式數據集計算時通過checkpoint來實現容錯,而checkpoint有兩種方式,一個是checkpoint data,一個是logging the updates。用戶可以控制采用哪種方式來實現容錯。
          • </ul> </li>

          • 可用性。

            • Spark通過提供豐富的Scala, Java,Python API及交互式Shell來提高可用性。
            • </ul> </li> </ul>

              Spark與Hadoop的結合

              • Spark可以直接對HDFS進行數據的讀寫,同樣支持Spark on YARN。Spark可以與MapReduce運行于同集群中,共享存儲資源與計算,數據倉庫Shark實現上借用Hive,幾乎與Hive完全兼容。
              • </ul>

                Spark的適用場景

                • Spark是基于內存的迭代計算框架,適用于需要多次操作特定數據集的應用場合。需要反復操作的次數越多,所需讀取的數據量越大,受益越大,數據量小但是計算密集度較大的場合,受益就相對較小
                • 由于RDD的特性,Spark不適用那種異步細粒度更新狀態的應用,例如web服務的存儲或者是增量的web爬蟲和索引。就是對于那種增量修改的應用模型不適合。
                • 總的來說Spark的適用面比較廣泛且比較通用。
                • </ul>

                  運行模式

                  • 本地模式
                  • Standalone模式
                  • Mesoes模式
                  • yarn模式
                  • </ul>

                    Spark生態系統

                    • Shark ( Hive on Spark): Shark基本上就是在Spark的框架基礎上提供和Hive一樣的H iveQL命令接口,為了最大程度的保持和Hive的兼容性,Shark使用了Hive的API來實現query Parsing和 Logic Plan generation,最后的PhysicalPlan execution階段用Spark代替Hadoop MapReduce。通過配置Shark參數,Shark可以自動在內存中緩存特定的RDD,實現數據重用,進而加快特定數據集的檢索。同時,Shark 通過UDF用戶自定義函數實現特定的數據分析學習算法,使得SQL數據查詢和運算分析能結合在一起,最大化RDD的重復使用。
                    • Spark streaming: 構建在Spark上處理Stream數據的框架,基本的原理是將Stream數據分成小的時間片斷(幾秒),以類似batch批量處理的方式來處理這小部分數據。Spark Streaming構建在Spark上,一方面是因為Spark的低延遲執行引擎(100ms+)可以用于實時計算,另一方面相比基于Record的其它處理框架(如Storm),RDD數據集更容易做高效的容錯處理。此外小批量處理的方式使得它可以同時兼容批量和實時數據處理的邏輯和算法。方便了一些需要歷史數據和實時數據聯合分析的特定應用場合。
                    • Bagel: Pregel on Spark,可以用Spark進行圖計算,這是個非常有用的小項目。Bagel自帶了一個例子,實現了Google的PageRank算法。
                    • </ul>

                      在業界的使用

                      • Spark項目在2009年啟動,2010年開源, 現在使用的有:Berkeley, Princeton, Klout, Foursquare, Conviva, Quantifind, Yahoo! Research & others, 淘寶等,豆瓣也在使用Spark的python克隆版Dpark。
                      • </ul> 來自:http://tech.uc.cn/?p=2116

 本文由用戶 jopen 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
 轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
 本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!