Apriori算法的Python實現
Apriori算法是數據挖掘中頻發模式挖掘的鼻祖,從60年代就開始流行,其算法思想也十分簡單樸素,首先挖掘出長度為1的頻繁模式,然后k=2
將這些頻繁模式合并組成長度為k的頻繁模式,算出它們的頻繁次數,而且要保證其所有k-1長度的子集也是頻繁的,值得注意的是,為了避免重復,合并的時候,只合并那些前k-2個字符都相同,而k-1的字符一邊是少于另一邊的。
以下是算法的Python實現:
__author__ = 'linfuyuan' min_frequency = int(raw_input('please input min_frequency:')) file_name = raw_input('please input the transaction file:') transactions = [] def has_infrequent_subset(candidate, Lk): for i in range(len(candidate)): subset = candidate[:-1] subset.sort() if not ''.join(subset) in Lk: return False lastitem = candidate.pop() candidate.insert(0, lastitem) return True def countFrequency(candidate, transactions): count = 0 for transaction in transactions: if transaction.issuperset(candidate): count += 1 return count with open(file_name) as f: for line in f.readlines(): line = line.strip() tokens = line.split(',') if len(tokens) > 0: transaction = set(tokens) transactions.append(transaction) currentFrequencySet = {} for transaction in transactions: for item in transaction: time = currentFrequencySet.get(item, 0) currentFrequencySet[item] = time + 1 Lk = set() for (itemset, count) in currentFrequencySet.items(): if count >= min_frequency: Lk.add(itemset) print ', '.join(Lk) while len(Lk) > 0: newLk = set() for itemset1 in Lk: for itemset2 in Lk: cancombine = True for i in range(len(itemset1)): if i < len(itemset1) - 1: cancombine = itemset1[i] == itemset2[i] if not cancombine: break else: cancombine = itemset1[i] < itemset2[i] if not cancombine: break if cancombine: newitemset = [] for char in itemset1: newitemset.append(char) newitemset.append(itemset2[-1]) if has_infrequent_subset(newitemset, Lk) and countFrequency(newitemset, transactions) >= min_frequency: newLk.add(''.join(newitemset)) print ', '.join(newLk) Lk = newLk來自:http://blog.csdn.net/xanxus46/article/details/40920275
本文由用戶 jopen 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!