20 個頂尖的 Python 機器學習開源項目

b2f5 9年前發布 | 458K 次閱讀 機器學習

我們在Github上的貢獻者和提交者之中檢查了用Python語言進行機器學習的開源項目,并挑選出最受歡迎和最活躍的項目。



1:在GitHub上用Python語言機器學習的項目,圖中顏色所對應的Bob, Iepy, Nilearn, NuPIC擁有最高的價值。

1. Scikit-learn

www.github.com/scikit-learn/scikit-learn

Scikit-learn 是基于Scipy為機器學習建造的的一個Python模塊,他的特色就是多樣化的分類,回歸和聚類的算法包括支持向量機,邏輯回歸,樸素貝葉斯分類器,隨機森林,Gradient Boosting,聚類算法和DBSCAN。而且也設計出了Python numerical和scientific libraries Numpy and Scipy


2.Pylearn2

www.github.com/lisa-lab/pylearn2

Pylearn是一個讓機器學習研究簡單化的基于Theano的庫程序。


3.NuPIC

www.github.com/numenta/nupic

NuPIC是一個以HTM學習算法為工具的機器智能平臺。HTM是皮層的精確計算方法。HTM的核心是基于時間的持續學習算法和儲存和撤銷的時空模式。NuPIC適合于各種各樣的問題,尤其是檢測異常和預測的流數據來源。


4. Nilearn

www.github.com/nilearn/nilearn

Nilearn 是一個能夠快速統計學習神經影像數據的Python模塊。它利用Python語言中的scikit-learn 工具箱和一些進行預測建模,分類,解碼,連通性分析的應用程序來進行多元的統計。


5.PyBrain

www.github.com/pybrain/pybrain

Pybrain是基于Python語言強化學習,人工智能,神經網絡庫的簡稱。 它的目標是提供靈活、容易使用并且強大的機器學習算法和進行各種各樣的預定義的環境中測試來比較你的算法。


6.Pattern

www.github.com/clips/pattern

Pattern 是Python語言下的一個網絡挖掘模塊。它為數據挖掘,自然語言處理,網絡分析和機器學習提供工具。它支持向量空間模型、聚類、支持向量機和感知機并且用KNN分類法進行分類。


7.Fuel

www.github.com/mila-udem/fuel

Fuel為你的機器學習模型提供數據。他有一個共享如MNIST, CIFAR-10 (圖片數據集), Google's One Billion Words (文字)這類數據集的接口。你使用他來通過很多種的方式來替代自己的數據。


8.Bob

www.github.com/idiap/bob

Bob是一個免費的信號處理和機器學習的工具。它的工具箱是用Python和C++語言共同編寫的,它的設計目的是變得更加高效并且減少開發時間,它是由處理圖像工具,音頻和視頻處理、機器學習和模式識別的大量軟件包構成的。


9.Skdata

www.github.com/jaberg/skdata

Skdata是機器學習和統計的數據集的庫程序。這個模塊對于玩具問題,流行的計算機視覺和自然語言的數據集提供標準的Python語言的使用。


10.MILK

www.github.com/luispedro/milk

MILK是Python語言下的機器學習工具包。它主要是在很多可得到的分類比如SVMS,K-NN,隨機森林,決策樹中使用監督分類法。 它還執行特征選擇。 這些分類器在許多方面相結合,可以形成不同的例如無監督學習、密切關系金傳播和由MILK支持的K-means聚類等分類系統。


11.IEPY

www.github.com/machinalis/iepy

IEPY是一個專注于關系抽取的開源性信息抽取工具。它主要針對的是需要對大型數據集進行信息提取的用戶和想要嘗試新的算法的科學家。


12.Quepy

www.github.com/machinalis/quepy

Quepy是通過改變自然語言問題從而在數據庫查詢語言中進行查詢的一個Python框架。他可以簡單的被定義為在自然語言和數據庫查詢中不同類型的問題。所以,你不用編碼就可以建立你自己的一個用自然語言進入你的數據庫的系統。

現在Quepy提供對于Sparql和MQL查詢語言的支持。并且計劃將它延伸到其他的數據庫查詢語言。


13.Hebel

www.github.com/hannes-brt/hebel

Hebel是在Python語言中對于神經網絡的深度學習的一個庫程序,它使用的是通過PyCUDA來進行GPU和CUDA的加速。它是最重要的神經網絡模型的類型的工具而且能提供一些不同的活動函數的激活功能,例如動力,涅斯捷羅夫動力,信號丟失和停止法。


14.mlxtend

www.github.com/rasbt/mlxtend

它是一個由有用的工具和日常數據科學任務的擴展組成的一個庫程序。


15.nolearn

www.github.com/dnouri/nolearn

這個程序包容納了大量能對你完成機器學習任務有幫助的實用程序模塊。其中大量的模塊和scikit-learn一起工作,其它的通常更有用。


16.Ramp

www.github.com/kvh/ramp

Ramp是一個在Python語言下制定機器學習中加快原型設計的解決方案的庫程序。他是一個輕型的pandas-based機器學習中可插入的框架,它現存的Python語言下的機器學習和統計工具(比如scikit-learn,rpy2等)Ramp提供了一個簡單的聲明性語法探索功能從而能夠快速有效地實施算法和轉換。


17.Feature Forge

www.github.com/machinalis/featureforge

這一系列工具通過與scikit-learn兼容的API,來創建和測試機器學習功能。

這個庫程序提供了一組工具,它會讓你在許多機器學習程序使用中很受用。當你使用scikit-learn這個工具時,你會感覺到受到了很大的幫助。(雖然這只能在你有不同的算法時起作用。)


18.REP

www.github.com/yandex/rep

REP是以一種和諧、可再生的方式為指揮數據移動驅動所提供的一種環境。

它有一個統一的分類器包裝來提供各種各樣的操作,例如TMVA, Sklearn, XGBoost, uBoost等等。并且它可以在一個群體以平行的方式訓練分類器。同時它也提供了一個交互式的情節。


19.Python 學習機器樣品

www.github.com/awslabs/machine-learning-samples

用亞馬遜的機器學習建造的簡單軟件收集。


20.Python-ELM

www.github.com/dclambert/Python-ELM

這是一個在Python語言下基于scikit-learn的極端學習機器的實現。


來自:http://mp.weixin.qq.com/s?__biz=MzAwNTA4OTc3OQ==&mid=207199077&idx=1&sn=039cda9e698a85bc32d336c6f84dd059

 本文由用戶 b2f5 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
 轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
 本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!