深入理解Memcached原理
來自: http://blog.csdn.net//chenleixing/article/details/47035453
1.為什么要使用memcache
由于網站的高并發讀寫需求,傳統的關系型數據庫開始出現瓶頸,例如:
1)對數據庫的高并發讀寫:
關系型數據庫本身就是個龐然大物,處理過程非常耗時(如解析SQL語句,事務處理等)。如果對關系型數據庫進行高并發讀寫(每秒上萬次的訪問),那么它是無法承受的。
2)對海量數據的處理:
對于大型的SNS網站,每天有上千萬次的數據產生(如推ter, 新浪微博)。對于關系型數據庫,如果在一個有上億條數據的數據表種查找某條記錄,效率將非常低。
使用memcache能很好的解決以上問題。
在實際使用中,通常把數據庫查詢的結果保存到Memcache中,下次訪問時直接從memcache中讀取,而不再進行數據庫查詢操作,這樣就在很大程度上減少了數據庫的負擔。
保存在memcache中的對象實際放置在內存中,這也是memcache如此高效的原因。
2.memcache的安裝和使用
這個網上有太多教程了,不做贅言。
3.基于libevent的事件處理
libevent是個程序庫,它將Linux的 epoll、BSD類操作系統的kqueue等事件處理功能 封裝成統一的接口。即使對服務器的連接數增加,也能發揮O(1)的性能。
memcached使用這個libevent庫,因此能在Linux、BSD、Solaris等操作系統上發揮其高性能。
參考:
- libevent: http://www.monkey.org/~provos/libevent/
- The C10K Problem: http://www.kegel.com/c10k.html
4.memcache使用實例:
- <?php
- $mc = new Memcache();
- $mc->connect('127.0.0.1', 11211);
- $uid = (int)$_GET['uid'];
- $sql = "select * from users where uid='uid' ";
- $key = md5($sql);
- if(!($data = $mc->get($key))) {
- $conn = mysql_connect('localhost', 'test', 'test');
- mysql_select_db('test');
- $result = mysql_fetch_object($result);
- while($row = mysql_fetch_object($result)) {
- $data[] = $row;
- }
- $mc->add($key, $datas);
- }
- var_dump($datas);
- ?>
<?php $mc = new Memcache(); $mc->connect('127.0.0.1', 11211); $uid = (int)$_GET['uid']; $sql = "select * from users where uid='uid' "; $key = md5($sql); if(!($data = $mc->get($key))) { $conn = mysql_connect('localhost', 'test', 'test'); mysql_select_db('test'); $result = mysql_fetch_object($result); while($row = mysql_fetch_object($result)) { $data[] = $row; } $mc->add($key, $datas); } var_dump($datas); ?>
5.memcache如何支持高并發(此處還需深入研究)
memcache使用多路復用I/O模型,如(epoll, select等),傳統I/O中,系統可能會因為某個用戶連接還沒做好I/O準備而一直等待,知道這個連接做好I/O準備。這時如果有其他用戶連接到服務器,很可能會因為系統阻塞而得不到響應。
而多路復用I/O是一種消息通知模式,用戶連接做好I/O準備后,系統會通知我們這個連接可以進行I/O操作,這樣就不會阻塞在某個用戶連接。因此,memcache才能支持高并發。
此外,memcache使用了多線程機制。可以同時處理多個請求。線程數一般設置為CPU核數,這研報告效率最高。
6.使用Slab分配算法保存數據
slab分配算法的原理是:把固定大小(1MB)的內存分為n小塊,如下圖所示:
slab分配算法把每1MB大小的內存稱為一個slab頁,每次向系統申請一個slab頁,然后再通過分隔算法把這個slab頁分割成若干個小塊的chunk(如上圖所示),然后把這些chunk分配給用戶使用,分割算法如下(在slabs.c文件中):
(注:memcache的github項目地址:https://github.com/wusuopubupt/memcached)
- /**
- * Determines the chunk sizes and initializes the slab class descriptors
- * accordingly.
- */
- void slabs_init(const size_t limit, const double factor, const bool prealloc) {
- int i = POWER_SMALLEST - 1;
- unsigned int size = sizeof(item) + settings.chunk_size;
- mem_limit = limit;
- if (prealloc) {
- /* Allocate everything in a big chunk with malloc 通過malloc的方式申請內存*/
- mem_base = malloc(mem_limit);
- if (mem_base != NULL) {
- mem_current = mem_base;
- mem_avail = mem_limit;
- } else {
- fprintf(stderr, "Warning: Failed to allocate requested memory in"
- " one large chunk.\nWill allocate in smaller chunks\n");
- }
- }
- memset(slabclass, 0, sizeof(slabclass));
- while (++i < POWER_LARGEST && size <= settings.item_size_max / factor) {
- /* Make sure items are always n-byte aligned 注意這里的字節對齊*/
- if (size % CHUNK_ALIGN_BYTES)
- size += CHUNK_ALIGN_BYTES - (size % CHUNK_ALIGN_BYTES);
- slabclass[i].size = size;
- slabclass[i].perslab = settings.item_size_max / slabclass[i].size;
- size *= factor;//以1.25為倍數增大chunk
- if (settings.verbose > 1) {
- fprintf(stderr, "slab class %3d: chunk size %9u perslab %7u\n",
- i, slabclass[i].size, slabclass[i].perslab);
- }
- }
- power_largest = i;
- slabclass[power_largest].size = settings.item_size_max;
- slabclass[power_largest].perslab = 1;
- if (settings.verbose > 1) {
- fprintf(stderr, "slab class %3d: chunk size %9u perslab %7u\n",
- i, slabclass[i].size, slabclass[i].perslab);
- }
- /* for the test suite: faking of how much we've already malloc'd */
- {
- char *t_initial_malloc = getenv("T_MEMD_INITIAL_MALLOC");
- if (t_initial_malloc) {
- mem_malloced = (size_t)atol(t_initial_malloc);
- }
- }
- if (prealloc) {
- slabs_preallocate(power_largest);
- }
- }
/** * Determines the chunk sizes and initializes the slab class descriptors * accordingly. */ void slabs_init(const size_t limit, const double factor, const bool prealloc) { int i = POWER_SMALLEST - 1; unsigned int size = sizeof(item) + settings.chunk_size; mem_limit = limit; if (prealloc) { /* Allocate everything in a big chunk with malloc 通過malloc的方式申請內存*/ mem_base = malloc(mem_limit); if (mem_base != NULL) { mem_current = mem_base; mem_avail = mem_limit; } else { fprintf(stderr, "Warning: Failed to allocate requested memory in" " one large chunk.\nWill allocate in smaller chunks\n"); } } memset(slabclass, 0, sizeof(slabclass)); while (++i < POWER_LARGEST && size <= settings.item_size_max / factor) { /* Make sure items are always n-byte aligned 注意這里的字節對齊*/ if (size % CHUNK_ALIGN_BYTES) size += CHUNK_ALIGN_BYTES - (size % CHUNK_ALIGN_BYTES); slabclass[i].size = size; slabclass[i].perslab = settings.item_size_max / slabclass[i].size; size *= factor;//以1.25為倍數增大chunk if (settings.verbose > 1) { fprintf(stderr, "slab class %3d: chunk size %9u perslab %7u\n", i, slabclass[i].size, slabclass[i].perslab); } } power_largest = i; slabclass[power_largest].size = settings.item_size_max; slabclass[power_largest].perslab = 1; if (settings.verbose > 1) { fprintf(stderr, "slab class %3d: chunk size %9u perslab %7u\n", i, slabclass[i].size, slabclass[i].perslab); } /* for the test suite: faking of how much we've already malloc'd */ { char *t_initial_malloc = getenv("T_MEMD_INITIAL_MALLOC"); if (t_initial_malloc) { mem_malloced = (size_t)atol(t_initial_malloc); } } if (prealloc) { slabs_preallocate(power_largest); } }
上面代碼中的slabclass是一個類型為slabclass_t結構的數組,其定義如下:
- typedef struct {
- unsigned int size; /* sizes of items */
- unsigned int perslab; /* how many items per slab */
- void **slots; /* list of item ptrs */
- unsigned int sl_total; /* size of previous array */
- unsigned int sl_curr; /* first free slot */
- void *end_page_ptr; /* pointer to next free item at end of page, or 0 */
- unsigned int end_page_free; /* number of items remaining at end of last alloced page */
- unsigned int slabs; /* how many slabs were allocated for this class */
- void **slab_list; /* array of slab pointers */
- unsigned int list_size; /* size of prev array */
- unsigned int killing; /* index+1 of dying slab, or zero if none */
- size_t requested; /* The number of requested bytes */
- } slabclass_t;
typedef struct { unsigned int size; /* sizes of items */ unsigned int perslab; /* how many items per slab */ void **slots; /* list of item ptrs */ unsigned int sl_total; /* size of previous array */ unsigned int sl_curr; /* first free slot */ void *end_page_ptr; /* pointer to next free item at end of page, or 0 */ unsigned int end_page_free; /* number of items remaining at end of last alloced page */ unsigned int slabs; /* how many slabs were allocated for this class */ void **slab_list; /* array of slab pointers */ unsigned int list_size; /* size of prev array */ unsigned int killing; /* index+1 of dying slab, or zero if none */ size_t requested; /* The number of requested bytes */ } slabclass_t;
借用別人的一張圖說明slabclass_t結構:
由分割算法的源代碼可知,slab算法按照不同大小的chunk分割slab頁,而不同大小的chunk以factor(默認是1.25)倍增大。
使用memcache -u root -vv 命令查看內存分配情況(8字節對齊):
找到大小最合適的chunk分配給請求緩存的數據:
- /*
- * Figures out which slab class (chunk size) is required to store an item of
- * a given size.
- *
- * Given object size, return id to use when allocating/freeing memory for object
- * 0 means error: can't store such a large object
- */
- unsigned int slabs_clsid(const size_t size) {
- int res = POWER_SMALLEST;// 初始化為最小的chunk
- if (size == 0)
- return 0;
- while (size > slabclass[res].size) //逐漸增大chunk size,直到找到第一個比申請的size大的chunk
- if (res++ == power_largest) /* won't fit in the biggest slab */
- return 0;
- return res;
- }
/* * Figures out which slab class (chunk size) is required to store an item of * a given size. * * Given object size, return id to use when allocating/freeing memory for object * 0 means error: can't store such a large object */ unsigned int slabs_clsid(const size_t size) { int res = POWER_SMALLEST;// 初始化為最小的chunk if (size == 0) return 0; while (size > slabclass[res].size) //逐漸增大chunk size,直到找到第一個比申請的size大的chunk if (res++ == power_largest) /* won't fit in the biggest slab */ return 0; return res; }
內存分配:
(此處參考:http://slowsnail.com.cn/?p=20)
- static void *do_slabs_alloc(const size_t size, unsigned int id) {
- slabclass_t *p;
- void *ret = NULL;
- item *it = NULL;
- if (id < POWER_SMALLEST || id > power_largest) {//判斷id是否會導致slabclass[]數組越界
- MEMCACHED_SLABS_ALLOCATE_FAILED(size, 0);
- return NULL;
- }
- p = &slabclass[id];//獲取slabclass[id]的引用
- assert(p->sl_curr == 0 || ((item *)p->slots)->slabs_clsid == 0);//判斷slabclass[id]是否有剩余的chunk
- if (! (p->sl_curr != 0 || do_slabs_newslab(id) != 0)) {//如果slabclass[id]中已經沒有空余chunk并且試圖向系統申請一個“頁”(slab)的chunk失敗,則返回NULL
- /* We don't have more memory available */
- ret = NULL;
- } else if (p->sl_curr != 0) {//slabclass[id]的空閑鏈表中還有chunk,則直接將其分配出去
- it = (item *)p->slots;//獲取空閑鏈表的頭指針
- p->slots = it->next;//將頭結點指向下一個結點(取下頭結點)
- if (it->next) it->next->prev = 0;//將新頭結點的prev指針置空
- p->sl_curr--;//減少slabclass[id]空閑鏈表中的chunk計數
- ret = (void *)it;//將頭結點賦給ret指針
- }
- if (ret) {//請求成功
- p->requested += size;//更新slabclass[id]所分配的內存總數
- MEMCACHED_SLABS_ALLOCATE(size, id, p->size, ret);
- } else {
- MEMCACHED_SLABS_ALLOCATE_FAILED(size, id);
- }
- return ret;
- }
static void *do_slabs_alloc(const size_t size, unsigned int id) { slabclass_t *p; void *ret = NULL; item *it = NULL; if (id < POWER_SMALLEST || id > power_largest) {//判斷id是否會導致slabclass[]數組越界 MEMCACHED_SLABS_ALLOCATE_FAILED(size, 0); return NULL; } p = &slabclass[id];//獲取slabclass[id]的引用 assert(p->sl_curr == 0 || ((item *)p->slots)->slabs_clsid == 0);//判斷slabclass[id]是否有剩余的chunk if (! (p->sl_curr != 0 || do_slabs_newslab(id) != 0)) {//如果slabclass[id]中已經沒有空余chunk并且試圖向系統申請一個“頁”(slab)的chunk失敗,則返回NULL /* We don't have more memory available */ ret = NULL; } else if (p->sl_curr != 0) {//slabclass[id]的空閑鏈表中還有chunk,則直接將其分配出去 it = (item *)p->slots;//獲取空閑鏈表的頭指針 p->slots = it->next;//將頭結點指向下一個結點(取下頭結點) if (it->next) it->next->prev = 0;//將新頭結點的prev指針置空 p->sl_curr--;//減少slabclass[id]空閑鏈表中的chunk計數 ret = (void *)it;//將頭結點賦給ret指針 } if (ret) {//請求成功 p->requested += size;//更新slabclass[id]所分配的內存總數 MEMCACHED_SLABS_ALLOCATE(size, id, p->size, ret); } else { MEMCACHED_SLABS_ALLOCATE_FAILED(size, id); } return ret; }
do_slabs_allc()函數首先嘗試從slot列表(被回收的chunk)中獲取可用的chunk,如果有可用的就返回,否則從空閑的chunk列表中獲取可用的chunk并返回。
刪除過期item:
延遲刪除過期item到查找時進行,可以提高memcache的效率,因為不必每時每刻檢查過期item,從而提高CPU工作效率
使用LRU(last recently used)算法淘汰數據:
- /*
- * try to get one off the right LRU
- * don't necessariuly unlink the tail because it may be locked: refcount>0
- * search up from tail an item with refcount==0 and unlink it; give up after 50
- * tries
- */
- if (tails[id] == 0) {
- itemstats[id].outofmemory++;
- return NULL;
- }
- for (search = tails[id]; tries > 0 && search != NULL; tries--, search=search->prev) {
- if (search->refcount == 0) { //refount==0的情況,釋放掉
- if (search->exptime == 0 || search->exptime > current_time) {
- itemstats[id].evicted++;
- itemstats[id].evicted_time = current_time - search->time;
- STATS_LOCK();
- stats.evictions++;
- STATS_UNLOCK();
- }
- do_item_unlink(search);
- break;
- }
- }
- it = slabs_alloc(ntotal, id);
- if (it == 0) {
- itemstats[id].outofmemory++;
- /* Last ditch effort. There is a very rare bug which causes
- * refcount leaks. We've fixed most of them, but it still happens,
- * and it may happen in the future.
- * We can reasonably assume no item can stay locked for more than
- * three hours, so if we find one in the tail which is that old,
- * free it anyway.
- */
- tries = 50;
- for (search = tails[id]; tries > 0 && search != NULL; tries--, search=search->prev) {
- if (search->refcount != 0 && search->time + 10800 < current_time) { //最近3小時沒有被訪問到的情況,釋放掉
- itemstats[id].tailrepairs++;
- search->refcount = 0;
- do_item_unlink(search);
- break;
- }
- }
- it = slabs_alloc(ntotal, id);
- if (it == 0) {
- return NULL;
- }
- }
/* * try to get one off the right LRU * don't necessariuly unlink the tail because it may be locked: refcount>0 * search up from tail an item with refcount==0 and unlink it; give up after 50 * tries */ if (tails[id] == 0) { itemstats[id].outofmemory++; return NULL; } for (search = tails[id]; tries > 0 && search != NULL; tries--, search=search->prev) { if (search->refcount == 0) { //refount==0的情況,釋放掉 if (search->exptime == 0 || search->exptime > current_time) { itemstats[id].evicted++; itemstats[id].evicted_time = current_time - search->time; STATS_LOCK(); stats.evictions++; STATS_UNLOCK(); } do_item_unlink(search); break; } } it = slabs_alloc(ntotal, id); if (it == 0) { itemstats[id].outofmemory++; /* Last ditch effort. There is a very rare bug which causes * refcount leaks. We've fixed most of them, but it still happens, * and it may happen in the future. * We can reasonably assume no item can stay locked for more than * three hours, so if we find one in the tail which is that old, * free it anyway. */ tries = 50; for (search = tails[id]; tries > 0 && search != NULL; tries--, search=search->prev) { if (search->refcount != 0 && search->time + 10800 < current_time) { //最近3小時沒有被訪問到的情況,釋放掉 itemstats[id].tailrepairs++; search->refcount = 0; do_item_unlink(search); break; } } it = slabs_alloc(ntotal, id); if (it == 0) { return NULL; } }
從item列表的尾部開始遍歷,找到refcount==0的chunk,調用do_item_unlink()函數釋放掉,另外,search->time+10800<current_time(即最近3小時沒有被訪問過的item),也釋放掉--這就是LRU算法的原理。
附:阿里2014筆試題一道:
- 1調入內存 1
- 5調入內存 1 5
- 1調入內存 5 1(命中 1,更新次序)
- 3調入內存 5 1 3
- 5調入內存 1 3 5 (命中5)
- 2調入內存 1 3 5 2
- 4調入內存(1最久未使用,淘汰1) 3 5 2 4
- 1調入內存(3最久未使用,淘汰3) 5 2 4 1
- 2調入內存 5 4 1 2(命中2)