Android的延遲實現的幾種解決方案以及原理分析
寫這篇文章的目的,是看到群里有人在實現延遲的時候,用如下的第四種方法,個人感覺有點不妥,為了防止更多的人有這種想法,所以自己抽空深入分析,就分析的結果,寫下此文,希望對部分人有啟示作用。
1.實現延遲的幾種方法?
答:
1.java.util.Timer類的:
public void schedule(TimerTask task, long delay) {
if (delay < 0)
throw new IllegalArgumentException("Negative delay.");
sched(task, System.currentTimeMillis()+delay, 0);
}
2.android.os.Handler類:
public final boolean postDelayed(Runnable r, long delayMillis)
{
return sendMessageDelayed(getPostMessage(r), delayMillis);
}
3.android.app.AlarmManager類:
@SystemApi
@RequiresPermission(android.Manifest.permission.UPDATE_DEVICE_STATS)
public void set(@AlarmType int type, long triggerAtMillis, long windowMillis,
long intervalMillis, OnAlarmListener listener, Handler targetHandler,
WorkSource workSource) {
setImpl(type, triggerAtMillis, windowMillis, intervalMillis, 0, null, listener, null,
targetHandler, workSource, null);
}
4.Thread.sleep()然后在一定時間之后再執行想執行的代碼:
new Thread(new Runnable(){
Thead.sleep(4*1000);
doTask();
}).start()
2.他們的各自的實現原理?
答:
1.Timer的實現,是通過內部開啟一個TimerThread:
private void mainLoop() {
while (true) {
try {
TimerTask task;
boolean taskFired;
synchronized(queue) {
// Wait for queue to become non-empty
while (queue.isEmpty() && newTasksMayBeScheduled)
queue.wait();
if (queue.isEmpty())
break; // Queue is empty and will forever remain; die
// Queue nonempty; look at first evt and do the right thing
long currentTime, executionTime;
task = queue.getMin();
synchronized(task.lock) {
if (task.state == TimerTask.CANCELLED) {
queue.removeMin();
continue; // No action required, poll queue again
}
currentTime = System.currentTimeMillis();
executionTime = task.nextExecutionTime;
if (taskFired = (executionTime<=currentTime)) {
if (task.period == 0) { // Non-repeating, remove
queue.removeMin();
task.state = TimerTask.EXECUTED;
} else { // Repeating task, reschedule
queue.rescheduleMin(
task.period<0 ? currentTime - task.period
: executionTime + task.period);
}
}
}
if (!taskFired) // Task hasn't yet fired; wait
queue.wait(executionTime - currentTime);
}
if (taskFired) // Task fired; run it, holding no locks
task.run();
} catch(InterruptedException e) {
}
}
}
是通過wait和延遲時間到達的時候,調用notify來喚起線程繼續執行,這樣來實現延遲的話,我們可以回開啟一個新的線程,貌似為了個延遲沒必要這樣吧,定時,頻繁執行的任務,再考慮這個吧。
2.Handler的postDelay是通過設置Message的when為delay的時間,我們知道當我們的應用開啟的時候,會同步開啟Looper.loop()方法循環的,不停的通過MeassgeQueue的next方法:
Message next() {
......
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
......
}
}
當我們向MessageQueue插入一條延遲的Message的時候,Looper在執行loop方法,底層會調用epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);其中的timeoutMillis參數指定了在沒有事件發生的時候epoll_wait調用阻塞的毫秒數(milliseconds)。這樣我們在之前的時間內這個時候阻塞了是會釋放cpu的資源,等到延遲的時間到了時候,再監控到事件發生。在這里可能有人會有疑問,一直阻塞,那我接下來的消息應該怎么執行呢?我們可以看到當我們插入消息的時候的方法:
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
阻塞了有兩種方式喚醒,一種是超時了,一種是被主動喚醒了,在上面我們可以看到當有消息進入的時候,我們會喚醒繼續執行,所以我們的即時消息在延遲消息之后插入是沒有關系的。然后在延遲時間到了的時候,我們也會被喚醒,執行對應的消息send,以達到延遲時間執行某個任務的目的。
優勢:這種延遲在阻塞的時候,是會釋放cpu的鎖,不會過多地占用cpu的資源。
3.AlarmManager的延遲的實現原理,是通過一個AlarmManager的set方法:
IAlarmManager mService.set(mPackageName, type, triggerAtMillis, windowMillis, intervalMillis, flags,
operation, recipientWrapper, listenerTag, workSource, alarmClock);
這里是通過aidl與AlarmManagerService的所在進程進行通信,具體的實現是在AlarmManagerService類里面:
private final IBinder mService = new IAlarmManager.Stub() {
@Override
public void set(String callingPackage,
int type, long triggerAtTime, long windowLength, long interval, int flags,
PendingIntent operation, IAlarmListener directReceiver, String listenerTag,
WorkSource workSource, AlarmManager.AlarmClockInfo alarmClock) {
final int callingUid = Binder.getCallingUid();
if (interval != 0) {
if (directReceiver != null) {
throw new IllegalArgumentException("Repeating alarms cannot use AlarmReceivers");
}
}
if (workSource != null) {
getContext().enforcePermission(
android.Manifest.permission.UPDATE_DEVICE_STATS,
Binder.getCallingPid(), callingUid, "AlarmManager.set");
}
// No incoming callers can request either WAKE_FROM_IDLE or
// ALLOW_WHILE_IDLE_UNRESTRICTED -- we will apply those later as appropriate.
flags &= ~(AlarmManager.FLAG_WAKE_FROM_IDLE
| AlarmManager.FLAG_ALLOW_WHILE_IDLE_UNRESTRICTED);
// Only the system can use FLAG_IDLE_UNTIL -- this is used to tell the alarm
// manager when to come out of idle mode, which is only for DeviceIdleController.
if (callingUid != Process.SYSTEM_UID) {
flags &= ~AlarmManager.FLAG_IDLE_UNTIL;
}
if (windowLength == AlarmManager.WINDOW_EXACT) {
flags |= AlarmManager.FLAG_STANDALONE;
}
if (alarmClock != null) {
flags |= AlarmManager.FLAG_WAKE_FROM_IDLE | AlarmManager.FLAG_STANDALONE;
} else if (workSource == null && (callingUid < Process.FIRST_APPLICATION_UID
|| Arrays.binarySearch(mDeviceIdleUserWhitelist,
UserHandle.getAppId(callingUid)) >= 0)) {
flags |= AlarmManager.FLAG_ALLOW_WHILE_IDLE_UNRESTRICTED;
flags &= ~AlarmManager.FLAG_ALLOW_WHILE_IDLE;
}
setImpl(type, triggerAtTime, windowLength, interval, operation, directReceiver,
listenerTag, flags, workSource, alarmClock, callingUid, callingPackage);
}
}
}
雖然有人覺得用AlarmManager能夠在應用關閉的情況下,定時器還能再喚起,經過自己的測試,當殺掉應用程序的進程,AlarmManager的receiver也是接收不到消息的,但是我相信在這里定時器肯定是發送了,但是作為接收方的應用程序進程被殺掉了,執行不了對應的代碼。不過有人也覺得AlarmManager更耗電,是因為我們執行定時任務的情況會頻繁喚起cpu,但是如果只是用來只是執行延遲任務的話,個人覺得和Handler.postDelayed()相比應該也不會耗電多的。
2.在上面的第四種方法,達到的延遲會一直通過Thread.sleep來達到延遲的話,會一直占用cpu的資源,這種方法不贊同使用。
3.總結
如上面我們看到的這樣,如果是單純的實現一個任務的延遲的話,我們可以用Handler.postDelayed()和AlarmManager.set()來實現,用(4)的方法Thread.sleep()的話,首先開啟一個新的線程,然后會持有cpu的資源,用(1)的方法,Timer,會開啟一個死循環的線程,這樣在資源上面都有點浪費。
如果大家還有更好的延遲解決方案,可以拿出來大家探討,如果文章有不對的地方,歡迎拍磚。
來自:https://segmentfault.com/a/1190000012328468