金融行業大數據用戶畫像實踐
概述: 金融消費者逐漸年輕化,80、90后成為客戶主力,所有金融行業面對的最大挑戰是消費者的消費行為和消費需求的轉變,金融企業迫切需要為產品尋找目標客戶和為客戶定制產品。
一、用戶畫像背后的原因
1、金融消費行為的改變,企業無法接觸到客戶
80后、90后總計共有3.4億人口,并日益成為金融企業主要的消費者。年輕人將主要的時間都消費在移動互聯網,消費在智能手機上。移動APP也成為所有金融企業的客戶入口、服務入口、消費入口、數據入口。
金融企業越來越難面對面接觸到年輕人,了解年輕人金融產品的需求。
2、消費者需求出現分化,需要尋找目標客戶
客戶群體正在出現分化,市場上很少有一種產品和一種金融服務可以滿足所有用戶的需求。金融產品也需要進行細化,為不同客戶提供不同產品。
金融企業需要借助于戶畫像,來了解客戶,找到目標客戶,觸達客戶。
二、用戶畫像的目的
用戶畫像是在了解客戶需求和消費能力,以及客戶信用額度的基礎上,尋找潛在產品的目標客戶,并利用畫像信息為客戶開發產品。
三、用戶畫像工作堅持的原則
用戶畫像涉及數據的緯度需要業務場景結合,既要簡單干練又要和業務強相關,既要篩選便捷又要方便進一步操作。用戶畫像需要堅持三個原則。
1、信用信息和人口屬性為主
信用信息是描述一個人在社會中的消費能力信息。信用信息可以直接證明客戶的消費能力,是用戶畫像中最重要和基礎的信息。包含消費者工作、收入、學歷、財產等信息。
定位完目標客戶之后,金融企業需要觸達客戶,人口屬性信息就是起到觸達客戶的作用,人口屬性信息包含姓名、性別,電話號碼,郵件地址,家庭住址等信息。這些信息可以幫助金融企業聯系客戶,將產品和服務推銷給客戶。
2、采用強相關信息,忽略弱相關信息
強相關信息就是同場景需求直接相關的信息,其可以是因果信息,也可以是相關程度很高的信息。
例如在其他條件相同的前提下,35歲左右人的平均工資高于平均年齡為30歲的人,計算機專業畢業的學生平均工資高于哲學專業學生,從事金融行業工作的平均工資高于從事紡織行業的平均工資。從這些信息可以看出來人的年齡、學歷、職業對收入的影響較大,同收入高低是強相關關系。簡單的講,對信用信息影響較大的信息就是強相關信息,反之則是弱相關信息。
用戶其他的信息,例如用戶的身高、體重、姓名、星座等信息,很難從概率上分析出其對消費能力的影響,這些弱相關信息,這些信息就不應該放到用戶畫像中進行分析,對用戶的信用消費能力影響很小。
3、將定量的信息歸類為定性的信息
畫像的目的是為產品篩選出目標客戶,定量的信息不利于對客戶進行篩選,需要將定量信息轉化為定性信息,通過信息類別來篩選人群。
例如可以將年齡段對客戶進行劃分,18歲-25歲定義為年輕人,25歲-35歲定義為中青年,36-45定義為中年人等。可以參考個人收入信息,將人群定義為高收入人群,中等收入人群,低收入人群。參考資產信息也可以將客戶定義為高、中、低級別。定性信息的類別和方式方法,金融可以從自身業務出發,沒有固定的模式。
將金融企業各類定量信息,集中在一起,對定性信息進行分類,并進行定性化,有利與對用戶進行篩選,快速定位目標客戶。
四、用戶畫像的方法介紹
金融企業需要結合業務需求進行用戶畫像,從實用角度出發,我們可以將用戶畫像信息分成五類信息。分別是人口屬性,信用屬性,消費特征,興趣愛好,社交屬性。它們基本覆蓋了業務需求所需要的強相關信息,結合外部場景數據將會產生巨大的商業價值。
1、人口屬性:
用于描述一個人基本特征的信息,主要作用是幫助金融企業知道客戶是誰,如何觸達用戶。姓名,性別,年齡,電話號碼,郵箱,家庭住址都屬于人口屬性信息。
2、信用屬性:
用于描述用戶收入潛力和收入情況,支付能力。幫助企業了解客戶資產情況和信用情況,有利于定位目標客戶。客戶職業、收入、資產、負債、學歷、信用評分等都屬于信用信息。
3、消費特征:
用于描述客戶主要消費習慣和消費偏好,用于尋找高頻和高價值客戶。幫助企業依據客戶消費特點推薦相關金融產品和服務,轉化率將非常高。為了便于篩選客戶,可以參考客戶的消費記錄將客戶直接定性為某些消費特征人群,例如差旅人群,境外游人群,旅游人群,餐飲用戶,汽車用戶,母嬰用戶,理財人群等。
4、興趣愛好:
幫助企業了解客戶興趣和消費傾向,定向進行活動營銷。興趣愛好的信息可能會和消費特征中部分信息有重復,區別在于數據來源不同。消費特征來源于已有的消費記錄,但是購買的物品和服務不一定是自己享用,但是興趣愛好代表本人的真實興趣。例如戶外運動愛好者,旅游愛好者,電影愛好者,科技發燒友,健身愛好者,奢侈品愛好者等。興趣愛好的信息可能來源于社交信息和客戶位置信息。
5、社交信息:
用于描述用戶在社交媒體的評論,這些信息往往代表用戶內心的想法和需求,具有實時性高,轉化率高的特點。例如客戶詢問上海哪里好玩?房屋貸款哪家優惠多?那個理財產品好?這些社交信息都是代表客戶多需求,如果企業可以及時了解到,將會有助于產品推廣。
五、金融企業用戶畫像的基本步驟
參考金融企業的數據類型和業務需求,可以將金融企業用戶畫像工作進行細化。基本上從數據集中到數據處理,從強相關數據到定性分類數據,從引入外部數據到依據業務場景進行篩選目標用戶。
1)畫像相關數據的整理和集中
金融企業內部的信息分布在不同的系統中,一般情況下,人口屬性信息主要集中在客戶關系管理系統,信用信息主要集中在交易系統和產品系統之中,也集中在客戶關系管理系統中,消費特征主要集中在渠道和產品系統中。
2)找到同業務場景強相關數據
金融企業內部信息較多,在用戶畫像階段不需要對所有信息都采用,只需要采用同業務場景和目標客戶強相關的信息即可,這樣有助于提高產品轉化率,降低ROI,有利于簡單找到業務應用場景,在數據變現過程中也容易實現。
3)對數據進行分類和標簽化(定量to定性)
金融企業集中了所有信息之后,依據業務需求,對信息進行加工整理,需要對定量的信息進行定性,方便信息分類和篩選。
六、金融行業用戶畫像實踐
1)銀行用戶畫像實踐介紹
銀行具有豐富的交易數據、個人屬性數據、消費數據、信用數據和客戶數據,用戶畫像的需求較大。但是缺少社交信息和興趣愛好信息。
銀行的主要業務需求集中在消費金融、財富管理、融資服務,用戶畫像要從這幾個角度出發,尋找目標客戶。 銀行的客戶數據很豐富,數據類型和總量較多,系統也很多。可以嚴格遵循用戶畫像的五大步驟。先利用數據倉庫進行數據集中,篩選出強相關信息,對定量信息定性化,生成DMP需要的數據。利用DMP進行基礎標簽和應用定制,結合業務場景需求,進行目標客戶篩選或對用戶進行深度分析。同時利用DMP引入外部數據,完善數據場景設計,提高目標客戶精準度。找到觸達客戶的方式,對客戶進行營銷,并對營銷效果進行反饋,衡量數據產品的商業價值。利用反饋數據來修正營銷活動和提高ROI。形成市場營銷的閉環,實現數據商業價值變現的閉環。
2)保險行業用戶畫像實踐
保險行業的產品是一個長周期產品,保險客戶再次購買保險產品的轉化率很高,經營好老客戶是保險公司一項重要任務。保險公司內部的交易系統不多,交易方式不是很復雜,數據主要集中在產品系統和交易系統之中,客戶關系管理系統中也包含豐富了信息,但是數據集中在很多保險公司還沒有完成,數據倉庫建設可能需要在用戶畫像建設前完成。
七、移動大數據的商業價值
在中國,移動大數據的商業應用剛剛開始,在房地產業、零售行業、金融行業、市場分析等領域取得了一些效果。目前主要的應用在互聯網金融的反欺詐領域。
線上的欺詐行為具有較高的隱蔽性,很難識別和偵測。P2P貸款用戶很大一部分來源于線上,因此惡意欺詐事件發生在線上的風險遠遠大于線下。中國的很多數據處于封閉狀態,P2P公司在客戶真實信息驗證方面面臨較大的挑戰。
移動大數據可以驗證P2P客戶的居住地點,例如某個客戶在利用手機申請貸款時,填寫自己居住地是上海。但是P2P企業依據其提供的手機設備信息,發現其過去三個月從來沒有居住在上海,這個人提交的信息可能是假信息,發生惡意欺詐的風險較高。
P2P企業可以利用移動設備的位置信息,了解過去3個月用戶的行為軌跡。如果某個用戶經常在半夜2點出現在酒吧等危險區域,并且經常有飆車行為,這個客戶定義成高風險客戶的概率就較高。移動App的使用習慣和某些高風險App也可以幫助P2P企業識別出用戶的高風險行為。如果用戶經常在半夜2點頻繁使用App,其成為高風險客戶的概率就較大。
移動大數據在預防互聯網惡意欺詐和高風險客戶識別方面,已經有了成熟的應用場景。通付盾自2011年起,就開始利用自身不斷完善的網籍庫和海量風險數據,預防互聯網惡意欺詐和識別高風險客戶,并取得了較好的效果。移動大數據應用場景正在被逐步挖掘出來,未來移動大數商業應用將更加廣闊。
用戶畫像是大數據商業應用的重要領域,其實并沒有多么復雜,只要掌握用戶畫像的原則和方法,以及實施步驟。結合金融企業的業務場景,用戶畫像可以幫助金融企業創造商業價值,實現大數據直接變現。
via:大數據人
</div> </div>
來自: http://www.199it.com/archives/444230.html