用漢明距離進行圖片相似度檢測的Java實現
Google、Baidu 等搜索引擎相繼推出了以圖搜圖的功能,測試了下效果還不錯~ 那這種技術的原理是什么呢?計算機怎么知道兩張圖片相似呢?
根據Neal Krawetz博士的解釋,原理非常簡單易懂。我們可以用一個快速算法,就達到基本的效果。
這里的關鍵技術叫做"感知哈希算法"(Perceptual hash algorithm),它的作用是對每張圖片生成一個"指紋"(fingerprint)字符串,然后比較不同圖片的指紋。結果越接近,就說明圖片越相似。
下面是一個最簡單的實現:
第一步,縮小尺寸。
將圖片縮小到8x8的尺寸,總共64個像素。這一步的作用是去除圖片的細節,只保留結構、明暗等基本信息,摒棄不同尺寸、比例帶來的圖片差異。
第二步,簡化色彩。
將縮小后的圖片,轉為64級灰度。也就是說,所有像素點總共只有64種顏色。
第三步,計算平均值。
計算所有64個像素的灰度平均值。
第四步,比較像素的灰度。
將每個像素的灰度,與平均值進行比較。大于或等于平均值,記為1;小于平均值,記為0。
第五步,計算哈希值。
將上一步的比較結果,組合在一起,就構成了一個64位的整數,這就是這張圖片的指紋。組合的次序并不重要,只要保證所有圖片都采用同樣次序就行了。
得到指紋以后,就可以對比不同的圖片,看看64位中有多少位是不一樣的。在理論上,這等同于計算"漢明距離"(Hamming distance)。如果不相同的數據位不超過5,就說明兩張圖片很相似;如果大于10,就說明這是兩張不同的圖片。
具體的代碼實現,可以參見Wote用python語言寫的imgHash.py。代碼很短,只有53行。使用的時候,第一個參數是基準圖片,第二個參數是用來比較的其他圖片所在的目錄,返回結果是兩張圖片之間不相同的數據位數量(漢明距離)。
這種算法的優點是簡單快速,不受圖片大小縮放的影響,缺點是圖片的內容不能變更。如果在圖片上加幾個文字,它就認不出來了。所以,它的最佳用途是根據縮略圖,找出原圖。
實際應用中,往往采用更強大的pHash算法和SIFT算法,它們能夠識別圖片的變形。只要變形程度不超過25%,它們就能匹配原圖。這些算法雖然更復雜,但是原理與上面的簡便算法是一樣的,就是先將圖片轉化成Hash字符串,然后再進行比較。
下面我們來看下上述理論用java來做一個DEMO版的具體實現:
import java.awt.Graphics2D; import java.awt.color.ColorSpace; import java.awt.image.BufferedImage; import java.awt.image.ColorConvertOp; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import javax.imageio.ImageIO; /* * pHash-like image hash. * Author: Elliot Shepherd (elliot@jarofworms.com * Based On: http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html */ public class ImagePHash { private int size = 32; private int smallerSize = 8; public ImagePHash() { initCoefficients(); } public ImagePHash(int size, int smallerSize) { this.size = size; this.smallerSize = smallerSize; initCoefficients(); } public int distance(String s1, String s2) { int counter = 0; for (int k = 0; k < s1.length();k++) { if(s1.charAt(k) != s2.charAt(k)) { counter++; } } return counter; } // Returns a 'binary string' (like. 001010111011100010) which is easy to do a hamming distance on. public String getHash(InputStream is) throws Exception { BufferedImage img = ImageIO.read(is); /* 1. Reduce size. * Like Average Hash, pHash starts with a small image. * However, the image is larger than 8x8; 32x32 is a good size. * This is really done to simplify the DCT computation and not * because it is needed to reduce the high frequencies. */ img = resize(img, size, size); /* 2. Reduce color. * The image is reduced to a grayscale just to further simplify * the number of computations. */ img = grayscale(img); double[][] vals = new double[size][size]; for (int x = 0; x < img.getWidth(); x++) { for (int y = 0; y < img.getHeight(); y++) { vals[x][y] = getBlue(img, x, y); } } /* 3. Compute the DCT. * The DCT separates the image into a collection of frequencies * and scalars. While JPEG uses an 8x8 DCT, this algorithm uses * a 32x32 DCT. */ long start = System.currentTimeMillis(); double[][] dctVals = applyDCT(vals); System.out.println("DCT: " + (System.currentTimeMillis() - start)); /* 4. Reduce the DCT. * This is the magic step. While the DCT is 32x32, just keep the * top-left 8x8. Those represent the lowest frequencies in the * picture. */ /* 5. Compute the average value. * Like the Average Hash, compute the mean DCT value (using only * the 8x8 DCT low-frequency values and excluding the first term * since the DC coefficient can be significantly different from * the other values and will throw off the average). */ double total = 0; for (int x = 0; x < smallerSize; x++) { for (int y = 0; y < smallerSize; y++) { total += dctVals[x][y]; } } total -= dctVals[0][0]; double avg = total / (double) ((smallerSize * smallerSize) - 1); /* 6. Further reduce the DCT. * This is the magic step. Set the 64 hash bits to 0 or 1 * depending on whether each of the 64 DCT values is above or * below the average value. The result doesn't tell us the * actual low frequencies; it just tells us the very-rough * relative scale of the frequencies to the mean. The result * will not vary as long as the overall structure of the image * remains the same; this can survive gamma and color histogram * adjustments without a problem. */ String hash = ""; for (int x = 0; x < smallerSize; x++) { for (int y = 0; y < smallerSize; y++) { if (x != 0 && y != 0) { hash += (dctVals[x][y] > avg?"1":"0"); } } } return hash; } private BufferedImage resize(BufferedImage image, int width, int height) { BufferedImage resizedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB); Graphics2D g = resizedImage.createGraphics(); g.drawImage(image, 0, 0, width, height, null); g.dispose(); return resizedImage; } private ColorConvertOp colorConvert = new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null); private BufferedImage grayscale(BufferedImage img) { colorConvert.filter(img, img); return img; } private static int getBlue(BufferedImage img, int x, int y) { return (img.getRGB(x, y)) & 0xff; } // DCT function stolen from http://stackoverflow.com/questions/4240490/problems-with-dct-and-idct-algorithm-in-java private double[] c; private void initCoefficients() { c = new double[size]; for (int i=1;i<size;i++) { c[i]=1; } c[0]=1/Math.sqrt(2.0); } private double[][] applyDCT(double[][] f) { int N = size; double[][] F = new double[N][N]; for (int u=0;u<N;u++) { for (int v=0;v<N;v++) { double sum = 0.0; for (int i=0;i<N;i++) { for (int j=0;j<N;j++) { sum+=Math.cos(((2*i+1)/(2.0*N))*u*Math.PI)*Math.cos(((2*j+1)/(2.0*N))*v*Math.PI)*(f[i][j]); } } sum*=((c[u]*c[v])/4.0); F[u][v] = sum; } } return F; } public static void main(String[] args) { ImagePHash p = new ImagePHash(); String image1; String image2; try { image1 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/1.jpg"))); image2 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/1.jpg"))); System.out.println("1:1 Score is " + p.distance(image1, image2)); image1 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/1.jpg"))); image2 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/2.jpg"))); System.out.println("1:2 Score is " + p.distance(image1, image2)); image1 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/1.jpg"))); image2 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/3.jpg"))); System.out.println("1:3 Score is " + p.distance(image1, image2)); image1 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/2.jpg"))); image2 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/3.jpg"))); System.out.println("2:3 Score is " + p.distance(image1, image2)); image1 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/4.jpg"))); image2 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/5.jpg"))); System.out.println("4:5 Score is " + p.distance(image1, image2)); } catch (FileNotFoundException e) { e.printStackTrace(); } catch (Exception e) { e.printStackTrace(); } } }
運行結果為:
DCT: 163 DCT: 158 1:1 Score is 0 DCT: 168 DCT: 164 1:2 Score is 4 DCT: 156 DCT: 156 1:3 Score is 3 DCT: 157 DCT: 157 2:3 Score is 1 DCT: 157 DCT: 156 4:5 Score is 21說明:其中1,2,3是3張非常相似的圖片,圖片分別加了不同的文字水印,肉眼分辨的不是太清楚,下面會有附圖,4、5是兩張差異很大的圖,圖你可以隨便找來測試,這兩張我就不上傳了。
結果說明:漢明距離越大表明圖片差異越大,如果不相同的數據位不超過5,就說明兩張圖片很相似;如果大于10,就說明這是兩張不同的圖片。從結果可以看到1、2、3是相似圖片,4、5差異太大,是兩張不同的圖片。
附:圖1、2、3
圖1
圖2
圖3
參考地址:
代碼參考:http://pastebin.com/Pj9d8jt5
原理參考:http://www.ruanyifeng.com/blog/2011/07/principle_of_similar_image_search.html
漢明距離:http://baike.baidu.com/view/725269.htm