K-means聚類算法

jopen 9年前發布 | 12K 次閱讀 算法

背景

K-means也是聚類算法中最簡單的一種了,但是里面包含的思想卻是不一般。最早我使用并實現這個算法是在學習韓爺爺那本數據挖掘的書中,那本書比較注重應用。看了Andrew Ng的這個講義后才有些明白K-means后面包含的EM思想。

聚類屬于無監督學習,以往的回歸、樸素貝葉斯、SVM等都是有類別標簽y的,也就是說樣例中已經給出了樣例的分類。而聚類的樣本中卻沒有給定y, 只有特征 x,比如假設宇宙中的星星可以表示成三維空間中的點集。聚類的目的是找到每個樣本x潛在的類別y,并將同類別y的樣本x放在一起。比如上面的星星,聚類后 結果是一個個星團,星團里面的點相互距離比較近,星團間的星星距離就比較遠了。

在聚類問題中,給我們的訓練樣本是,每個,沒有了y。

算法

K-means算法是將樣本聚類成k個簇(cluster),具體算法描述如下:

1、 隨機選取k個聚類質心點(cluster centroids)為。

2、 重復下面過程直到收斂 {

對于每一個樣例i,計算其應該屬于的類

對于每一個類j,重新計算該類的質心

K 是我們事先給定的聚類數,代表樣例i與k個類中距離最近的那個類,的值是1到k中的一個。質心代表我們對屬于同一個類的樣本中心點的猜測,拿星團模型來解 釋就是要將所有的星星聚成k個星團,首先隨機選取k個宇宙中的點(或者k個星星)作為k個星團的質心,然后第一步對于每一個星星計算其到k個質心中每一個 的距離,然后選取距離最近的那個星團作為,這樣經過第一步每一個星星都有了所屬的星團;第二步對于每一個星團,重新計算它的質心(對里面所有的星星坐標求 平均)。重復迭代第一步和第二步直到質心不變或者變化很小。

下圖展示了對n個樣本點進行K-means聚類的效果,這里k取2。

K-means面對的第一個問題是如何保證收斂,前面的算法中強調結束條件就是收斂,可以證明的是K-means完全可以保證收斂性。下面我們定性的描述一下收斂性,我們定義畸變函數(distortion function)如下:

J 函數表示每個樣本點到其質心的距離平方和。K-means是要將J調整到最小。假設當前J沒有達到最小值,那么首先可以固定每個類的質心,調整每個樣例的 所屬的類別來讓J函數減少,同樣,固定,調整每個類的質心也可以使J減小。這兩個過程就是內循環中使J單調遞減的過程。當J遞減到最小時,和c也同時收 斂。(在理論上,可以有多組不同的和c值能夠使得J取得最小值,但這種現象實際上很少見)。

由于畸變函數J是非凸函數,意味著我們不能保證取得的最小值是全局最小值,也就是說k-means對質心初始位置的選取比較感冒,但一般情況下 k- means達到的局部最優已經滿足需求。但如果你怕陷入局部最優,那么可以選取不同的初始值跑多遍k-means,然后取其中最小的J對應的和c輸出。

K-means與EM

下面累述一下K-means與EM的關系,首先回到初始問題,我們目的是將樣本分成k個類,其實說白了就是求每個樣例x的隱含類別y,然后利用隱 含類別將x 歸類。由于我們事先不知道類別y,那么我們首先可以對每個樣例假定一個y吧,但是怎么知道假定的對不對呢?怎么評價假定的好不好呢?我們使用樣本的極大似 然估計來度量,這里是就是x和y的聯合分布P(x,y)了。如果找到的y能夠使P(x,y)最大,那么我們找到的y就是樣例x的最佳類別了,x順手就聚類 了。但是我們第一次指定的y不一定會讓P(x,y)最大,而且P(x,y)還依賴于其他未知參數,當然在給定y的情況下,我們可以調整其他參數讓 P(x,y)最大。但是調整完參數后,我們發現有更好的y可以指定,那么我們重新指定y,然后再計算P(x,y)最大時的參數,反復迭代直至沒有更好的y 可以指定。

這個過程有幾個難點,第一怎么假定y?是每個樣例硬指派一個y還是不同的y有不同的概率,概率如何度量。第二如何估計P(x,y),P(x,y)還可能依賴很多其他參數,如何調整里面的參數讓P(x,y)最大。這些問題在以后的篇章里回答。

這里只是指出EM的思想,E步就是估計隱含類別y的期望值,M步調整其他參數使得在給定類別y的情況下,極大似然估計P(x,y)能夠達到極大值。然后在其他參數確定的情況下,重新估計y,周而復始,直至收斂。

上面的闡述有點費解,對應于K-means來說就是我們一開始不知道每個樣例對應隱含變量也就是最佳類別。最開始可以隨便指定一個給它,然后為了 讓 P(x,y)最大(這里是要讓J最小),我們求出在給定c情況下,J最小時的(前面提到的其他未知參數),然而此時發現,可以有更好的(質心與樣例距離最 小的類別)指定給樣例,那么得到重新調整,上述過程就開始重復了,直到沒有更好的指定。這樣從K-means里我們可以看出它其實就是EM的體現,E步是 確定隱含類別變量,M步更新其他參數來使J最小化。這里的隱含類別變量指定方法比較特殊,屬于硬指定,從k個類別中硬選出一個給樣例,而不是對每個類別賦 予不同的概率。總體思想還是一個迭代優化過程,有目標函數,也有參數變量,只是多了個隱含變量,確定其他參數估計隱含變量,再確定隱含變量估計其他參數, 直至目標函數最優。

 本文由用戶 jopen 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
 轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
 本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!