谷歌開放一種新的圖像分類卷積神經網絡模型

jopen 8年前發布 | 31K 次閱讀 Google

今天,谷歌再次宣布開放 Inception-ResNet-v2,一個在 ILSVRC 圖像分類基準上取得頂尖準確率的卷積神經網絡。

谷歌開放一種新的圖像分類卷積神經網絡模型

為了在該領域取得更多進展,今天我們非常高興的宣布開放 Inception-ResNet-v2,這是一個在 ILSVRC 圖像分類基準上取得頂尖準確率的卷積神經網絡。Inception-ResNet-v2 是早期發布的 Inception V3 模型的變體,該模型借鑒了微軟 ResNet 論文中的思路。具體內容可在我們的論文:Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning 中看到。

殘差連接(Residual connections )允許模型中進行 shortcut,也使得研究員能成功的訓練更深的神經網絡從而產生更好的性能。這也使得 Inception 塊的極度簡單化成為可能。下圖對比了這兩個模型架構:

谷歌開放一種新的圖像分類卷積神經網絡模型

Inception V3 圖解

谷歌開放一種新的圖像分類卷積神經網絡模型

Inception-ResNet-v2 的圖解

在第二張圖解的頂端,你可以看到全部的網絡拓展,可以注意到該網絡比之前的 Inception V3 要深得多。主圖的下面是更簡單閱讀同一網絡版本的方式,里面重復的殘差塊是被壓縮了。注意,里面的 Inception 塊被簡化的,比先前的 Inception V3 包含更少的并行塔 (parallel towers)。

Inception-ResNet-v2 架構比之前的前沿模型更加準確。下表報告了在基于單類圖像的 ILSVRC 2012 圖像分類基準上的 Top-1 和 Top-5 的準確度檢驗結果。此外,該新模型相比于 Inception V3 大約只需要兩倍的存儲和計算能力。

谷歌開放一種新的圖像分類卷積神經網絡模型

結果援引于 ResNet 論文

舉個例子,Inception V3 和 Inception-ResNet-v2 模型在識別犬種上都很擅長,但新模型做的更好。例如,舊模型錯誤報告右圖中的狗是阿拉斯加雪橇犬,而新的 Inception-ResNet-v2 模型準確識別了兩張圖片中的狗的種類。

谷歌開放一種新的圖像分類卷積神經網絡模型

阿拉斯加雪橇犬(左),西伯利亞愛斯基摩狗(右)

為了讓人們能立即進行試驗,我們也發布了 Inception-ResNet-v2 模型的一個預訓練案例作為 TF-Slim 圖像模型庫的一部分。

來自: 機器之心

 本文由用戶 jopen 自行上傳分享,僅供網友學習交流。所有權歸原作者,若您的權利被侵害,請聯系管理員。
 轉載本站原創文章,請注明出處,并保留原始鏈接、圖片水印。
 本站是一個以用戶分享為主的開源技術平臺,歡迎各類分享!